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1 Introduction

In earlier publications [3, 4] the theoretical background of reduction operators has been
thoroughly discussed. This letter presents an interesting case study of the reduction operator
approach to circuit equations. Based on an extremely simple example circuit, the relation
between the nodal equations and the state variable equations is examined.

2 A review of the reduction operator

Let R, be the reduction operator of rank n. Its formal definitions including all properties
and proofs can be found in [3, 4]. For convenience though, we will repeat its most essential

definition
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As can be seen from (1), the reduction operator of rank n reduces all elements in the
(r — n) x n south-western corner of A to zero, transforming it to an upper block triangular
form Ay [1]. A may be any matrix with more than n rows and columns, provided that there
is a non-sigular square submatrix A;; of order n in its north-western corner. The application
of the reduction operator R, actually implies the inversion of the north—western portion in
A. Complementary to the reduction operator, we further define the transposed reduction

operator
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where A,, is identically equal to (2). As expected, the transposed reduction operator trans-
forms matrix A into a lower block triangular form A, [1].

R. and its close relative RZ are then used together with three general permutation
matrices P, () and R to constitute a general operator equation, mapping any matrix equation

AB =0 (4)

into

Rn(PAQT) RT(QBR") £ R.(A) RI(B) £ AB = 0. (5)

It has been established [3, 4], that the repeating application of this operator equation
suffices to describe entire circuit analysis approaches. For instance, a series of reduction
operators can be used to execute a Gaussian forward elimination, a back substitution, a
triangular decomposition or a Gauss—Jordan elimination. Also, a circuit’s nodal, cutset or
loop equation set may be formulated solely by using reduction operators and permutation
matrices.

3 The application example

Consider the following extremely simple two-node (n = 2) circuit in figure 1. It is composed
of four branches (b = 4), namely one capacitor branch (¢ = 1), three resistive branches (r = 3)
and no inductive branch (I = 0).
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Figure 1: The sample circuit

This circuit requires a basic tableau (6) of 10th order [2]. Since we intend to apply
reduction operators to the tableau, we use a rather unusual notation (6). The equation right
hand side has been appended to the coefficient matrix on the left hand side, leaving a zero
matrix behind. This notation also necessitates an additional —1 constant element in the
variable vector. The blank areas in (6) correspond to zero matrices and should be considered
full of zero coefficients.

The tableau in (6) is now suitable for reduction operators, since it has the required form
(4). The matrixin (6), containing derivative operators, actually makes (6) a linear differential
equation set rather than a linear one. In order to produce the correct nodal equations, we
must replace all reactances in the circuit by adequate linear time invariant models. In our
case, the capacitor branch equation %Ubg — 13 = 0 becomes gzvpz — 93 = 3. The current
excitation ¢, (¢) should be also considered time independent ¢;.
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At this stage the entire nodal analysis approach including Gaussian elimination and extended
back substitution can be performed by a simple series of reduction operators in combination
with some permutation matrices

AT 1 0 0 Z”
Ro(R1(Ps Ro(Rs(Ra(P1| 0 0 A 0 Qf)))@g))(QzQ1 Z-b ) =0. (7)
0 Y Z e o

Tableau (6)

Nodal equations (9)

Gaussian elimination (10)

Extended back substitution

Let us discuss (7) gradually. The first step consists of transforming the basic circuit
tableau to a nodal equation set. This is done in by the permutation matrices

P, = 0 0 Taxs |, Q1 = o (8)
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and the reduction operators R;, Rs. The result can be seen in
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The second order nodal equation set is only a small part of (9), namely the last two rows.
The triangular equation set above it is relating the independent nodal voltages v,, v,5 to all
the other circuit variables.



In our second order equation set the Gaussian elimination’s forward course consists of a
single reduction operator i.e. Ry in (7). In this way only the last row of (9) is affected
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A second order back substitution should produce the circuit nodal voltages from the last
two rows in (10). Considering the upper triangular matrix portion above the nodal equations
however, we can run an extended 10th order back substitution, assembling the values of all
circuit variables.

Using reduction operators [4], any back substitution is formally executed as a forward
substitution of the reversed matrix order. The reversing matrices in (7) are antidiagonal unit
matrices Py and ),. The substitution itself needs only the two reduction operators R; and
Ro, in order to arrive at the final diagonal form, from which the solution vector is obtained
by division.

Let us now go back to the circuit tableau (6) and use the state variable approach. This
time the derivation operators are kept in the equation set rather than being replaced with
time invariant models. The reduction operator expression for state variable analysis yields a
remarkable resemblance between the nodal equations (7) and the state equations
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In order to clarify (11) we will explicitly discuss its three stages. First, a permutation is
needed to determine the circuits order of complexity and to select the state variables. This
is done by heuristic methods and leads to the permutation matrices
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Secondly, three reduction operators Rs, Re¢ and Ry are applied in (11). The permuted
equation set is transformed to an upper block triangular form with the state equations in the



last block
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As expected, we find in this simple case only one state equation, involving the branch

voltage across our only capacitor v,3. The modified nodal equations of the circuit’s resistive

portion can be easily identified directly above the state equation. In order to compute the

state equation coefficients W and 1 the inversion of this nodal equation set is compulsory
(14). The final first order differential equation in the last row of (13) hence reads
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It isn’t until now, that the circuits time dependence is resolved by an integration algo-
rithm. Once the circuit transient response of the state variables is determined, the output
equations above the state equation in (13) are employed to get the values of all the other
circuit variables. This is done by a simple block—wise back substitution, similar to the one in
(7). Again an antidiagonal permutation P, (), is used to reverse the equation order. Then
the last two reduction operators Ry, R4 from (11) take effect and obtain the values of the
output variables.

At this point, perhaps some application notes are necessary in order to explain the in-
clusion of time derivative operators (6) into a computer data structure. Today most pro-
gramming tools are equipped with complex arithmetics, which is indispensable for frequency
domain analysis anyway. By using complex arithmetics the time derivative operators in (6)
can be accommodated as unit imaginary parts of coefficients. All subsequent operations are
simply performed in a complex domain.



References

[1] R. P. Tewarson, Sparse Matrices, Academic Press, New York, NY, 1973.

[2] L. O. Chua, P. M. Lin, Computer—Aided Analysis of Electronic Circuits, Prentice—Hall, Engle-
wood Cliffs, NJ, 1975.

[3] T. Tuma, F. Bratkovi¢, ‘A Mathematical Model for Network Analysis Methods’, Proc. Eur. Conf.
on Circuit Theory and Design-93, Davos, 1993, pp. 397-402.

[4] T. Tuma, F. Bratkovi¢, ‘A General Approach to Circuit Equations’, The International Journal
of Circuit Theory and Applications, vol. 22, no. 6, pp. 431-445 (1994).



