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The analog-integrated circuits industry is exerting increasing pressure to shorten the
analog circuit design time. This pressure is put primarily on the analog circuit design-
ers that in turn demand automated circuit design tools evermore vigorously. Such tools
already exist in the form of circuit optimization software packages but they all suffer a
common ailment — slow convergence. Even taking into account the increasing computa-
tional power of modern computers the convergence times of such optimization tools can
range from a few days to even weeks. Different authors have tried diverse approaches

for speeding up the convergence with varying success. In this paper authors propose a
combined optimization algorithm that attempts to improve the speed of convergence by
exploiting the positive properties of the underlying optimization methods. The proposed
algorithm is tested on a number of test cases and the convergence results are discussed.

Keywords: Computer-aided design; analog circuits; optimization algorithms.

1. Introduction

The ever-increasing pressure to shorten the time-to-market exerted by the inte-
grated circuit (IC) industry is fueling the development of design automation meth-
ods and software.1 In the beginning of each IC design process, designers get a list
of the so-called design requirements formulated as value intervals for every circuit
performance measure (e.g., gain, phase margin, delay, etc.).

The requirement that the performance measure intervals must be obeyed for a
whole range of operating conditions and manufacturing process variations further
increases the complexity of the design problem. This demand is the basic charac-
teristic of a robust IC.

One usually practices a robust design by evaluating the circuit characteristics
for various extreme combinations of operating conditions and manufacturing pro-
cess variations (corners). By keeping the circuit performance measures within their
prescribed intervals across a cleverly chosen set of corners, a robust IC is obtained.
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In the design process the designer first chooses the circuit topology that has
the potential to fulfill all of the design requirements for the prescribed range of
operating conditions and manufacturing process variations. The next step is the
circuit sizing where the values of the elements are chosen for the given topology.
This step can be automated by means of parametric optimization.

Parametric optimization is a process where a real-valued function f : R
n �→ R is

minimized. This function is often referred to as the cost function (CF). Transforming
the search for a better circuit into the search for the lowest value of f translates
the initial design problem handled by humans into an optimization problem that
can be handled by a computer. A suitable transformation can be constructed by
means of penalty functions. Such CF formulation has been shown to yield robust
designs.2–4

The basic idea of the penalty function approach is to add up the contributions
of individual performance measures transformed by penalty functions. The form
of each penalty function is determined by the type of the design requirement for
a particular performance measure (e.g., measure value must be below some goal,
above some goal, etc.). Generally the penalty is proportional to the amount the goal
is violated. Let C denote the set of corner points, mi the ith performance measure,
and ni the corresponding penalty function. The CF can then be constructed as

f(x) =
∑

i

ni(mi(cworst
i , x)) , (1)

where cworst
i ∈ C denotes the corner point in which the ith measure reaches its worst

value.
Once f is constructed and can be evaluated by means of simulation and some

basic arithmetics, it can be used as the input for an optimization algorithm. The
goal of the optimization algorithm is to find the set of circuit parameter values
x ∈ R

n for which the value f(x) is as low as possible, using as few CF evaluations
as possible.

As circuit simulators provide no information on the value of the CF gradient,
gradient-based optimization algorithms are not appropriate for circuit sizing. Ide-
ally, the result of the optimization algorithm should be the global minimum of the
CF. Unfortunately, dedicated global algorithms require many CF evaluations, while
local algorithms easily get trapped in a local minimum caused by the numerical
noise introduced into the CF during simulation.

A reasonable compromise between local and global behavior was found in the
family of simplex algorithms.5–8 As these algorithms manipulate at least n + 1
points at the same time, they exhibit a fair amount of noise independence. Another
advantage is that they do not require CF gradient information. The initial set of
points is usually chosen randomly causing the algorithm to exhibit some global
behavior. Initially, a rapidly decreasing sequence of CF values is produced which
together with the simplicity of implementation makes simplex algorithms very pop-
ular in the optimization community. Unfortunately, simplex algorithms are plagued
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by convergence problems. Convergence problems usually manifest themselves as
slow progress in the vicinity of a local minimum.9–11

The goal of this paper is not to find a new global optimization method. Instead,
we try to extend the simplex algorithm in a way that the convergence to a local
minimum will be guaranteed (which is currently not the case). By ensuring local
convergence we expect the algorithm to become faster (spend less function evalua-
tions for finding the same result). Furthermore we also expect slightly better final
results for cases where the original simplex algorithm stagnates. The latter is often
encountered with higher dimensional problems (10 and above).

To overcome the shortcomings of the Box simplex algorithm, a two-stage algo-
rithm is proposed. In the first stage the simplex algorithm finds the vicinity of a
good local minimum. The second stage utilizes a local optimization algorithm to
find the exact location of the minimum. Any local algorithm with a strong conver-
gence theory could be used in the second stage. Due to the fact that the gradient
of the CF is not available, a good candidate for the second part of the search is an
algorithm from the family of trust-region methods.12–14

In the following sections we describe the modified Box simplex algorithm and
the trust-region algorithm, and in the section describing the combined algorithm
we discuss the accompanying switch condition. We test the combined algorithm
first on some simple mathematical functions to prove its feasibility, and then on
real-world integrated circuit-sizing problems. The conclusions are given in the last
section.

2. A New Two-Stage Algorithm

In the combined two-stage algorithm the goal of the first stage is to bring the
iterates in the neighborhood of a CF local minimum. Any method that performs
well in practice can be used for this purpose. Our method of choice is the modified
Box simplex algorithm.6 The second stage pinpoints the minimum. The method
used in the second stage must have a strong convergence theory. A method from
the trust-region family is used in the proposed combined algorithm.12–14

The Box simplex algorithm was chosen due to the results obtained in our past
research.7,8 These results have shown that despite the strong theoretical background
of gradient-based algorithms they tend to produce poor results on real-world circuit
optimization problems. Surprisingly, a simple heuristic algorthm like the Box sim-
plex algorithm not only outperformed them, but even showed some global search
capabilities which can be traced back to the random choice of the initial simplex.

Simplex algorithms build on the idea of moving a set of M > n points (also
referred to as the simplex) through the n-dimensional space in order to find a point
with a CF value as low as possible. The worst point of the simplex is the one that
is the candidate for the replacement. Using operations such as reflection through
the centroid of the remaining M − 1 points and contraction toward the best point
the algorithm tries to improve the worst point. This process is repeated until the
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simplex becomes small enough. The best point remains in the simplex as long as
no better point is found.

The manipulation of M points instead of a single one results in a fair amount of
noise resistance. By choosing these points randomly in the beginning of the search
some global search capabilities are also obtained. Although simplex algorithms pro-
duce good results on practical optimization problems there is no guarantee that they
are capable of finding even a local minimizer of the CF. The main reason for their
popularity is their simplicity and the rapid initial decrease of the CF value they
produce.

Trust-region algorithms form a local model of the CF. The model is assumed
to be valid within a part of the search space also referred to as the trust region.
The minimum of the model in the trust region is calculated. If the CF value at the
minimum predicted by the model is lower than the CF value at the current point,
the search moves to the newly found minimum. If the CF value predicted by the
model agrees well with the true CF value, the trust region is expanded; otherwise,
it is contracted. The search terminates when the trust region is sufficiently small.

Trust-region algorithms are typical local search algorithms that require no
derivative information. Unlike the simplex algorithms their convergence to a local
minimum of the CF is guaranteed under mild assumptions.12–14

2.1. The modified Box simplex algorithm

Let superscripts denote vector components in Cartesian coordinates. The original
Box simplex method is capable of handling box constraints (explicit constraints) of
the form6

bi ≤ xi ≤ Bi i = 1, 2, . . . , n . (2)

Values bi and Bi are lower and upper bounds imposed on parameter values and
define a box B in R

n.
The normalized distance between two points (x and y) is obtained as

d(x, y) = 100 ·

√√√√ n∑
i=1

(
xi − yi

Bi − bi

)2

. (3)

The modified Box simplex algorithm can be summarized in the following steps:

(1) Build the initial simplex containing the initial point x0 and M − 1 ≥ n addi-
tional randomly chosen points from B. Evaluate the CF at the M points of
the initial simplex. Choose α > 1 and β ∈ (0, 1).

(2) Sort the points of the simplex such that f(x0) ≤ f(x1) ≤ · · · ≤ f(xM−1).
(3) Compute the centroid of the M − 1 best points: x = (M − 1)−1

∑M−2
i=0 xi.

(4) Mirroring. Mirror the worst point across the centroid to obtain xr =
x + α(x − xM−1). If any component of xr violates box constraints, it gets
truncated to the violated constraint value.
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(5) If f(xr) < f(xM−1), replace xM−1 with xr and go to step 12.
(6) Set xc := xr.
(7) Contraction toward centroid. While f(xc) ≥ f(xM−1) and d(xc, x) ≥ γ, set

xc := x + β(xc − x).
(8) If f(xc) < f(xM−1), replace xM−1 with xc and go to step 12.
(9) Set xc := xr.

(10) Contraction toward best point. While f(xc) ≥ f(xM−1) and d(xc, x0) ≥ γ,
set xc := x0 + β(xc − x0).

(11) If f(xc) < f(xM−1), replace xM−1 with xc; otherwise replace it with x0.
(12) Check the stopping condition. Go back to step 2 if the condition is not

satisfied.

The stopping condition is based on the simplex size d. When the simplex size
falls below γs, the algorithm stops. Before the simplex size is evaluated the points
are sorted according to their CF value and the new centroid (x) is evaluated, upon
which d is obtained from

d =
1

M − 1

M−2∑
i=0

d(x, xi) . (4)

The following values of parameters were used: M = 2n, α = 1.3, β = 0.5, and
γ = γs = 0.001.

2.2. The l∞ trust-region algorithm

Trust-region methods solve for the minimum of a model function representing the
CF on a subset of the search space also referred to as the trust region (T ). In
our implementation the search space is normalized in such a manner that interval
[0, 100] corresponds to the intervals [bi, Bi] of individual circuit parameters. In this
case the most appropriate trust region is square in shape. For a square trust region,
the l∞ norm must be used. The l∞ norm is defined as

‖x‖∞ = max
i=1,...,n

|xi| . (5)

The trust region T is then defined as

T (xc, r) = {x : ‖x − xc‖∞ ≤ r} , (6)

where xc is the center of the trust region and r is its radius.
The CF is evaluated at selected points in the trust region and based on the

results a model of the CF m(x) is built. The model is minimized over the trust
region resulting in point xm. The CF is evaluated at xm. Based on the obtained
amount of CF decrease, the algorithm decides whether the trust-region center xc

should move to xm. The agreement between the model and the CF at xm is the
basis for increasing or decreasing the trust-region radius r. After xc and r are
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updated, a new model is built and the whole procedure is repeated until r becomes
small enough.

We can summarize the trust-region algorithm in the following steps:

(1) Set xc = x0 and choose an initial trust-region radius r > 0. Choose 0 < η1 ≤
η2 < 1 and 0 < γ1 ≤ γ2 < 1.

(2) Choose a finite set of interpolation points P ⊂ B
⋂
T (xc, r). Evaluate CF at

the points from P and build a model m(x) of the CF.
(3) Minimize m(x) subject to x ∈ B

⋂
T (xc, r). Let xm denote the resulting point.

(4) Evaluate f(xm) and

ρ =
f(xc) − f(xm)
m(xc) − m(xm)

.

(5) If ρ ≥ η1 let xc = xm.
(6) Update r to rnew:

rnew ∈




[r,∞) ; ρ ≥ η2 ,

[γ2r, r) ; ρ ∈ [η1, η2) ,

[γ1r, γ2r) ; ρ < η1 .

(7)

(7) Check the stopping condition. Go back to step 2 if the condition is not satisfied.

Trust-region methods are often associated with quadratic models. Unfortunately
such models require (n + 1)(n + 2)/2 sample points in order to determine the
complete set of model parameters. In circuit optimization the number of parameters
is very often 20 or more, which means that 231 or more points must be evaluated for
a single model construction step. Furthermore, to obtain the model coefficients one
must solve a linear system of order (n+1)(n+2)/2. If one takes into account that a
single optimization run with the simplex algorithm typically takes a few thousand
CF evaluations one can see that there can only be a few trust-region iterations
before the combined algorithm starts to perform worse than the ordinary simplex
algorithm.

A much better choice is a linear model of the form m(x) = gTx + b, where
g is the gradient vector of the model function. Linear models require only n + 1
points with known CF values and they can be constructed without solving a linear
system. In our example, one of the n + 1 points is the trust-region center (xc). The
remaining n points are chosen by perturbing individual vector components to the
edge of B

⋂
T (xc, r) that lies further away from xc.

The stopping condition is based on the trust-region radius (r). When r falls
below γt, the algorithm is stopped. The algorithm is somewhat more greedy than
the ones described in the literature. At the beginning of step 2 the trust-region
center (xc) is moved to the point with the best-yet CF value. This takes advantage
of possible CF improvements obtained during the evaluation of points from P used
for constructing m(x).



June 21, 2008 9:34 WSPC/123-JCSC 00412

A Combined Simplex–Trust-Region Method for Analog Circuit Optimization 129

The following values of parameters were used: γt = 0.001, η1 = 0.01, η2 = 0.9.
The trust-region radius update was obtained from

rnew =




2.5 · r ; ρ ≥ η2 ,

0.25 · r ; ρ ∈ [η1, η2) ,

0.25 · r ; ρ < η1 .

(8)

2.3. The combined simplex–trust-region algorithm

We can summarize the combined algorithm in the following steps:

(1) Choose the constants for both optimization methods.
(2) Run the modified Box simplex method until the neighborhood of a minimum

is reached.
(3) Choose the initial trust-region radius and center.
(4) Run the trust-region method until the minimum is reached.

In the process of deciding when the neighborhood of a CF minimum is found,
one has two sources of information that can be used. The first is the sequence of
CF values as they were obtained by the simplex algorithm. The second one is the
position of the simplex points.

The CF value decreases as the simplex algorithm progresses toward a CF min-
imum. Unfortunately, the initial CF value and the dynamics of the decrease are
very different from case to case. Even if the CF is constructed in a standard way
(see Refs. 2, 3, and 1) the differences are fairly large. Applying some monotonically
increasing function to the CF value before it enters the decision-making process of
the algorithm produces the same path through the search space, but the value of
the CF can be completely different. This can misguide the combined algorithm into
switching to a trust-region method too early or too soon if the point of switch is
based on the CF value.

On the other hand the simplex shrinks as it closes in on a CF minimum. This
shrinking is the cause that the simplex algorithm eventually stops (the stopping
condition is based on the simplex size d). The rate at which the simplex is shrinking
gradually decreases as the algorithm approaches a local minimum.

In the combined algorithm, the simplex size and the rate of simplex size change
are the triggers for the termination of the simplex algorithm. The rate of simplex
size change is calculated from a sequence of 2-tuples (i, di), where i is the consecutive
number of the CF evaluation and di the corresponding simplex size. Such 2-tuples
are generated every time the simplex size is checked to see if the algorithm should
terminate.

The criterion for transition to the trust-region algorithm is not checked until
there are at least j > Mµ1 2-tuples in the sequence. Suppose the simplex algo-
rithm is at the jth CF evaluation. Let Ij denote the set of indices i for which
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max(j − Mµ2, 0) ≤ i ≤ j. Least squares fitting is used to obtain coefficients kj

and aj

min
kj ,aj

∑
i∈Ij

(di − (kji + aj)) . (9)

The obtained slope of a fitted line (kj) is usually negative as the simplex is
mostly shrinking. The switch condition can then be expressed as

− kj < ksn
−1/2 ∨ dj < ds . (10)

To make sure that the transition from the Box simplex algorithm to the trust-
region algorithm always happens, one must make sure that the former terminates
after a finite number of iterations. This can be achieved by making the CF piecewise-
constant (e.g., using grid-restrainment).15

Definition 1. A grid restrainment operator R is a map R
n �→ R

n such that
y = R(x) and

yi = bi + si

⌊
xi − bi

si
+

1
2

⌋
.

si is the maximal distance between the neighboring grid points in the ith dimen-
sion. The range of R is a grid. It is easy to prove that the intersection of a grid and
a compact set is a finite set of points.

Now, let the Box simplex algorithm use the following function instead of f(x):

f̃(x) = f(R(x)) . (11)

f̃ is a piecewise-constant approximation of f . As the values of si decrease, f̃

becomes more accurate. The finiteness of the Box simplex algorithm (when its
termination condition is expressed by Eq. (10)) is the consequence of the following
theorem.

Theorem 1. The range of f̃ on any compact domain is a finite subset of R.

Proof. Since the intersection of a grid and a compact set is a finite set, the range
of R on a compact domain must be a finite set too. There exist finitely many values
of f that correspond to this set.

The final result can be summarized in the following theorem.

Theorem 2. Suppose that f has compact level sets and that the Box simplex algo-
rithm optimizes f̃ instead of f . Then there can only be finitely many function eval-
uations before the algorithm terminates due to Eq. (10).

Proof. The compactness of level sets of f implies the same for the level sets of f̃ .
This in turn guarantees the existence of a ball C that includes the level set of the
worst point in the initial simplex.
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A point is accepted into the simplex only if it decreases the f̃ value at the worst
point of the simplex. Therefore, the simplex remains within C regardless of how
long the algorithm is running.

C is compact; so, f̃ has only finitely many different values in C (see previous
theorem). Now recall again that a point is accepted into the simplex if its corre-
sponding CF value is better than the one at the worst point. Together with the
fact that there are only finitely many different values of f̃ in C, this results in a
finite number of points being accepted into the simplex. After that only contrac-
tion steps can occur that reduce the simplex diameter below any positive value in a
finite number of CF evaluations. So, the second part of Eq. (10) is satisfied sooner
or later.

When the switch condition (10) is satisfied, the Box algorithm assumes that it
has found the neighborhood of a minimum and terminates. Next, the trust-region
algorithm is started. The initial trust-region center (xc) is chosen to be at the best-
yet point obtained by the simplex algorithm. The initial trust-region radius (r) is
set to 100. This way the initial trust-region spans the complete search space, and
the chance of getting stuck in a local minimum caused by numerical noise in the
CF is reduced.16

The point of switch to the trust-region algorithm is determined by the values
assigned to µ1, µ2, ks, and ds. The value of µ1 must be large enough so that the
simplex algorithm has a chance to probe around the search space. µ2 specifies the
amount of averaging for calculating the rate of simplex size change. If the value
of µ2 is too small, the intermediate increase in the size of the simplex (when a
promising direction of search is found) can cause a premature switch to the trust-
region algorithm.

The value of ds specifies the point at which the trust-region algorithm replaces
the simplex algorithm regardless of the rate of simplex size change. Typically this
constant should be set to a value around 1.0 (the simplex size is 1% of the total
search space size). Finally, ks specifies the critical rate of simplex size change per
iteration. When the rate of simplex size change drops below ks, the trust-region
algorithm takes over. Values around 0.2 (0.2% change in simplex size per iteration)
tend to give good results.

The convergence properties of the two employed algorithms are very different.
While there exists a strong convergence theory for trust-region algorithms12–14 the
convergence properties of simplex algorithms are almost unknown.17 Furthermore,
there exist several counter-examples.9–11 On the other hand, simplex algorithms
perform remarkably well on practical circuit optimization problems.2–4,7,18 They
rapidly decrease the CF value and exhibit resistance to noise. Due to the initial
random choice of the simplex points, the obtained local minimum is quite good
when compared to the results of other local algorithms.7

As the trust-region algorithm is run in the second part of the search, the con-
vergence properties of the combined algorithm are determined by the convergence
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properties of the trust-region algorithm. This way the combined algorithm has
mathematically provable convergence. The simplex algorithm which identifies the
vicinity of a good local minimum in the first part of the search is followed by the
trust-region algorithm which finds the actual minimum.

3. Testing the Combined Algorithm

The combined algorithm is a general optimization method. The use of a trust-
region algorithm in the second part of the search makes it locally convergent. In
our past research, the modified Box simplex algorithm (used in the first stage of the
combined algorithm) emerged as most suitable for fast circuit optimization.7 It also
performed well on IC sizing problems.2–4,18 Therefore, the combined algorithm was
compared to the modified Box simplex algorithm. If the new algorithm outperforms
the Box simplex algorithm, it outperforms several other algorithms7 too.

We implemented both algorithms in the SPICE OPUS circuit simulation and
optimization tool.8

3.1. Test problems

The comparison was done on 11 test problems comprising six circuits and three
analytical functions.

The combined algorithm was first tested on three simple analytical cases. The
first one (lin) was a linear function of 10 variables with a minimum in one of the
corners of the search space. The second one (sq1) was a convex quadratic function of
10 variables with a minimum in the center of the search space. The third analytical
case was a concave quadratic function of 10 variables (sq2) with a maximum in the
center of the search space and local minima in its corners.

The nand test case (Fig. 1, bottom left) requires the optimizer to minimize the
area, delay, and rise/fall time of a NAND gate. The delay test case (Fig. 1, top
left) attempts to achieve the desired delay with a delay circuit and keep the power
consumption and circuit area as low as possible.

The remaining test cases are various differential amplifiers that constitute the
basic building blocks of most analog-integrated circuits. For all these circuits the
goal is to maximize the performance of the circuit (e.g., gain, bandwidth, phase
margin, etc.) while keeping the circuit area and power consumption as low as possi-
ble. The simplest amplifier is the damp1 test case (Fig. 1, top right) — a differential
amplifier with single-ended output. The only amplifier with a differential output in
our test suite is the ddamp case (Fig. 1, bottom right). The damp2 (Fig. 2, top)
and lfbuf (Fig. 2, bottom) are differential amplifiers with single-ended outputs.

To illustrate a typical optimization problem, the damp2c test case will be
described in more detail. The case has 27 optimization parameters. There are fewer
optimization parameters than device parameters in the circuit (due to matched
devices). Such devices are identical. Every MOS transistor group contributes two
parameters (width and length). The MOS transistor groups are (NM0, NM1), NM2,
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(NM3, NM5, NM7, NM8), NM4, NM6, (PM0, PM1), (PM2, PM3, PM5, PM10),
(PM9, PM11), PM4, PM6, and PM7. Additionally, three resistors (RR2, RR3, and
RR4) and two capacitors (CC0 and CC1) are also subject to optimization con-
tributing a total of five parameters. Together with the MOS transistors, the total
parameter count is 22 + 5 = 27.

The MOS transistor widths and lengths are optimized in the range from 0.3 to
50 µm and from 0.18 to 5 µm, respectively. Capacitors and resistors are optimized
in the range from 10 to 20 pF and from 10 to 100 kΩ. The step for MOS width and
length, capacitance, and resistance is 0.01 µm, 1 fF, and 1 Ω, respectively.

The amplifier load is set to 10 pF capacitance in parallel with 10 kΩ resistance.
A total of five design corners are accounted for in the process of circuit evaluation.

• typical MOS model, 27◦C, 1.8 V supply voltage,
• fast MOS model, 50◦C, 2.0 V supply voltage,
• slow MOS model, 0◦C, 1.6 V supply voltage,
• fast MOS model, 0◦C, 1.6 V supply voltage, and
• slow MOS model, 50◦C, 2.0 V supply voltage.

Four analyses are performed for every circuit in every corner — an operating
point analysis, a DC sweep analysis, an AC analysis, and a transient analysis. The
values of performance measures in their respective worst corner points (Table 2)
are obtained from the results of these analyses. The CF value is obtained by adding
up the CF contributions of these measurement values across all corners. The CF
contribution of a measurement is calculated using the following formula

ni =




MW ramp
(

M − MG

MG

)
for minimizing M ,

MW ramp
(

MG − M

MG

)
for maximizing M ,

(12)

where ramp(x) is the unit ramp function and M is the measurement value. The
values of goal (MG) and weight (MW) are listed in Table 2.

The number of optimization parameters (n), the number of SPICE analyses
(A) needed for a single CF evaluation, and the number of MOS transistors (M) in
the circuit are listed in Table 1. The last two properties are not specified for the
analytical test cases. The damp2c and lfbufc circuits are the same as damp2 and
lfbuf, except that the optimization is performed across several corner points. This
increases the number of required analyses per CF evaluation and changes the shape
of the CF due to the inclusion of multiple corner points.

4. Results

We chose the parameters of the combined algorithm empirically with limited numer-
ical trials: µ1 = 10, µ2 = 100, ks = 0.22, and ds = 1.5. Every test problem was
run with the simplex algorithm and with the combined algorithm. Table 1 lists
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Table 1. Performance of the combined algorithm versus the performance of the modified simplex
algorithm.

Simplex Combined

Test problem n/A/M N ffinal N ffinal

lin* 10/—/— 5066 − 999.993 888 − 1000.000
sq1 10/—/— 2130 1.44e−6 1028 3.70e−3
sq2* 10/—/— 6871 − 24999.1 363 − 25000.0
nand 3/9/4 295 166.644 172 166.735
delay* 12/2/6 1334 13284.6 1215 12975.1
ddamp 14/44/18 1543 104.426 1453 91.2954
damp1* 15/31/13 1716 9.58849 1365 9.58514
damp2* 27/4/20 5719 2.64345 3369 2.05055
damp2c 27/20/20 4732 7.36757 2314 7.02317
lfbuf* 36/4/32 9152 0.763508 3786 0.707504
lfbufc 36/20/32 5759 4.18654 3028 4.01531

n, A, M , N , and ffinal are the number of optimization parameters, the number of analyses per
candidate circuit, the number of MOS transistors in the circuit, the number of evaluated candidate
circuits, and the final CF value, respectively.

Table 2. Resulting circuit performance for the damp2c test case.

Performance measure Target MG MW Simplex Combined

Cost min — — 7.37 7.02
Area (µm2) min 10000 1 7310 7160
Supply current (mA) min 1 3 0.992 0.984
AC gain (dB) max 70 5 63.6 64.2
Unity gain bandwidth (MHz) max 5 3 3.6 4.11
Bandwidth (Hz) max 500 1 2160 2130
Phase margin (◦) max 60 5 41.1 40.4
Gain margin (dB) max 10 5 14.5 13.5
Swing (V) max 1.6 5 0.893 0.896
DC gain (dB) max 60 5 43.3 43.4
Settling time (ns) min 300 1 275 333
Overshoot (%) min 1.0 1 0.765 0.857
Slew rate (V/µs) max 5 1 3.4 3.8
Rise time (ns) min 200 1 141 128
Fall time (ns) min 200 1 315 301

MG is the measurement goal and MW is the measurement weight. The last two columns list the
worst measurement values across all corner points for the simplex and the combined algorithm.

the number of CF evaluations (N) and the final CF value (ffinal) reached by both
the algorithms. The time needed by the algorithm to reach the solution is directly
proportional to the number of CF evaluations.

On all of the test problems the combined algorithm terminates after fewer CF
evaluations than the simplex algorithm. On one problem (sq1) the final CF value
obtained by the combined algorithm is significantly worse than the one obtained
by the simplex algorithm. This happened due to the inappropriately chosen trust-
region termination condition. By changing γt to 1.4 · 10−5 the combined algorithm
takes 2120 CF evaluations to reach the final CF value of 1.65 ·10−6 which is almost
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the same as the result obtained by the simplex algorithm. By further decreasing γt

the combined algorithm finds a better solution, but requires more CF evaluations
than the simplex algorithm. The good performance of the simplex algorithm can
be explained by the single-minimum located in the center of the search space. A
simplex algorithm with a random initial simplex quickly finds such solutions by
repeated shrinking.

For the nand test problem the final CF value obtained by the combined algo-
rithm is slightly worse than the one obtained by the simplex algorithm. The two
solutions (compared in terms of the optimization parameters) are close in the search
space. The values of the three optimization parameters found by the simplex algo-
rithm are 2.16, 0.68, and 1.38 µm. The combined algorithm resulted in 2.12, 0.65,
and 1.32 µm. The combined algorithm terminated prematurely due to numerical
noise in the CF. Nevertheless the combined algorithm found only a slightly worse
solution with significantly fewer CF evaluations. For all other test problems, the
CF value obtained by the combined algorithm was better.

In Table 1, asterisks mark the test problems where the switch to the trust-region
algorithm occurred due to the rate of simplex size change. This occurs in about one-
half of the problems, which indicates that the use of both the simplex size and the
rate of simplex size change in the switch condition is justified.

In seven out of the eight IC design test problems the combined algorithm out-
performed the simplex algorithm both in terms of the final CF value and in terms
of the number of CF evaluations. This provides a fairly good reason to believe
that the combined algorithm generally outperforms the simplex algorithm on cir-
cuit optimization problems. It is reasonable to expect that replacing the simplex
algorithm with the combined algorithm will generally improve the final results of
circuit optimization runs and decrease the number of CF evaluations for up to 50%.

Table 2 compares the performance measures of the damp2c circuit optimized
with the simplex algorithm and the combined algorithm. Of the 14 performance
measures, the circuit that resulted from the combined algorithm run has nine per-
formance measures that are better. The comparison of the device parameter values
(Table 3) reveals that the circuit obtained with the combined algorithm is very close
to the circuit obtained by the simplex algorithm (of 27 parameters, 15 are almost
identical and four are in the same order of magnitude). The first one, however, was
obtained in less than half the time.

5. Conclusion

The ever-increasing pressure to shorten the time-to-market exerted by the IC indus-
try is fueling the development of design automation methods and software. Auto-
mated selection of element parameter values for a predefined topology (automated
circuit sizing) is the simplest of the techniques that have the potential to signif-
icantly shorten the time-to-market. At the core of every software for automated
circuit sizing there is always a parametric optimization algorithm.
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Table 3. The comparison of resulting circuits for the damp2c test problem.

NM0 W NM0 L NM2 W NM2 L NM3 W NM3 L NM4 W NM4 L

Simplex 26.1 0.33 33.0 2.52 0.84 2.62 34.4 1.58
Combined 26.1 0.33 34.4 2.55 0.82 2.67 34.9 1.47

NM6 W NM6 L PM0 W PM0 L PM2 W PM2 L PM9 W PM9 L

Simplex 1.17 2.45 5.12 0.37 37.2 2.65 20.4 1.37
Combined 26.1 0.33 34.4 2.55 0.82 2.67 34.9 1.47

PM4 W PM4 L PM6 W PM6 L PM7 W PM7 L CC0 CC1

Simplex 48.1 4.68 23.2 0.83 6.51 4.97 5.20 3.89
Combined 26.1 0.33 34.4 2.55 0.82 2.67 5.08 3.40

RR2 RR3 RR4

Simplex 31.8 50.9 8.44
Combined 32.1 45.8 9.16

The units for width and length, capacitance, and resistance are µm, pF, and kΩ, respectively.

One of the methods that performed remarkably well on circuit optimization
problems is the Box simplex algorithm. Despite its good performance, it still has
two major shortcomings: slow convergence in the neighborhood of a minimum and
lack of convergence theory. Combining this algorithm with a mathematically well-
established algorithm from the family of trust-region algorithms, one can expect to
overcome these shortcomings.

We implemented the combined algorithm in the SPICE OPUS circuit simulator
and optimizer. We test it on a set of 11 test problems. On most of them (9), the
combined algorithm outperformed the Box simplex algorithm both in terms of the
number of CF evaluations (by up to 50%) and the final CF value. This makes us
believe that replacing the Box simplex algorithm with the combined algorithm will
generally benefit the automation of the circuit-sizing process.

As circuit optimization is a lengthly task, parallelization of the combined algo-
rithm has the potential to even further speed up the search for a circuit that satis-
fies the design requirements. Both simplex19,20 and trust-region21 algorithms were
already a subject of research in the field of algorithm parallelization. It is also
possible to distribute evaluations of the same circuit in different operating condi-
tions (corners) on multiple computers.22 Therefore, we can reasonably expect that
parallelizing the combined algorithm will be a fairly simple task.
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