
Unconstrained Derivative-Free Optimization

by Successive Approximation 1

Árpád Bűrmen a,∗

aUniversity of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000

Ljubljana

Tadej Tuma b

bUniversity of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000

Ljubljana

Abstract

We present an algorithmic framework for unconstrained derivative-free optimiza-
tion based on dividing the search space in regions (partitions). Every partition is
assigned a representative point. The representative points form a grid. A piece-wise
constant approximation to the function subject to optimization is constructed using
a partitioning and its corresponding grid. The convergence of the framework to a
stationary point of a continuously differentiable function is guaranteed under mild
assumptions. The proposed framework is appropriate for upgrading heuristics that
lack mathematical analysis into algorithms that guarantee convergence to a local
minimizer. A convergent variant of the Nelder-Mead algorithm that conforms to the
given framework is constructed. The algorithm is compared to two previously pub-
lished convergent variants of the NM algorithm. The comparison is conducted on
the Moré-Garbow-Hillstrom set of test problems and on four variably dimensional
functions with dimension up to 100. The results of the comparison show that the
proposed algorithm outperforms both previously published algorithms.

Key words: unconstrained minimization, direct search, successive approximation,
grid, simplex
1991 MSC: 65K05, 90C56

∗ Correspondance author.

Email address: arpadb@fides.fe.uni-lj.si (Árpád Bűrmen).
1 The research was co-funded by the Ministry of Education, Science, and Sport
(Ministrstvo za Šolstvo, Znanost in Šport) of the Republic of Slovenia through the
programme P2-0246 Algorithms and optimization methods in telecommunications.

Preprint submitted to Elsevier Science 20 December 2007

1 Introduction

Solving unconstrained optimization problems of the form

min
x∈Rn

f(x) (1)

where f : R
n → R has received a lot of attention lately, in particular methods

that search for local minima of f . Several different methods for solving such
problems without using derivative information (direct search) were proposed
in the past. These so-called direct search methods were despised by the opti-
mization community at first [22] because most of them lacked mathematical
analysis. In the past 20 years the advancements in computational capabili-
ties and simulation techniques lead to many optimization problems where no
derivatives of f are available. Consequently direct search methods became
interesting for optimization practitioners.

The situation began to change with the advent of the multidirectional search
by Torczon [20]. Its convergence theory was based on the fact that all visited
points lie on successively finer grids. The convergence theory that followed
[21] established the class of pattern search methods. Several well known al-
gorithms belong to that class, among others also the Hooke-Jeeves algorithm
[11]. The developments continued by allowing larger flexibility in choosing the
grid [8] and introducing a sufficient descent condition [7] which removes the
requirement that the points must lie on a grid.

On the other side developments occurred on generalizing the convergence the-
ory in the direction of nonsmooth functions (functions that aren’t continuously
differentiable). The activities in this field started with the introduction of the
generalized pattern search (GPS) [1] and the nonsmooth approach of Coope
and Price [9]. GPS evolved into mesh-adaptive direct search (MADS) [2] where
an asymptotically dense set of search directions is used. A very good overview
which encompasses mostly the analysis for continuously differentiable func-
tions is given in [12]. A somewhat older review of direct search methods can
be found in [15]. Some of the above-mentioned convergence analyses are de-
veloped for constrained optimization algorithms ([1], [9], [2], and [12]).

This paper presents a framework for ensuring convergence to a local minimizer
of continuously differentiable functions. The framework is based on the idea of
grid restrainment from [4] where it was used with a very special form of a grid.
The generalization presented here allows non-uniform grids provided that some
simple requirements are satisfied. These requirements are equivalent to those
imposed on the admissible sets in [9] (i.e. the intersection of a bounded set and
the grid must always be finite). The division of R

n into regions (partitions)

2

which define the behavior of the grid-restrainment operator can also be chosen
in a very flexible manner.

Our framework is a byproduct of the search for simple convergent variants of
the Nelder-Mead (NM) algorithm [18] which gave rise to the notion of grid-
restrainment. The effect of grid-restrainment to successively finer grids can
also be viewed from a different perspective. Instead of grid-restrained points
we are working with increasingly finer piecewise constant approximations to
f . This interpretation leads to the successive approximation NM (SANM)
algorithm. SANM requires less linear algebra operations than its predecessor,
the grid-restrained NM (GRNM) algorithm [4], and is also faster.

The paper is divided as follows. First the background for analyzing our frame-
work is developed. The framework is presented and its convergence is estab-
lished under mild assumptions. Next a variant of the Nelder-Mead algorithm
conforming to the presented framework is described. The algorithm is tested
on the Moreé-Garbow-Hillstrom [17] test suite and on some multidimensional
test problems with dimension ranging up 100. The results are compared to
those obtained with the convergent simplex variants proposed in [19] and [4].
The variant [4] is shown to conform to the proposed framework. Finally the
conclusions are given.

Notation. Vectors are denoted by lowercase letters and are assumed to be
column vectors so that xTy denotes the scalar product of x and y. Matrices
are denoted by uppercase letters e.g. A. Aij denotes j-th element in the i-
th row of matrix A. The corresponding lowercase letter with a superscript is
reserved for matrix columns (e.g. ai). Set members are also denoted with a
superscript. Members of a sequence {xk}

∞
k=1 are denoted by a subscript (e.g.

xk). Calligraphic uppercase letters are reserved for maps and sets. R and Z

denote the set of real and integer numbers, respectively. Function o(x) is such
that limx↓0 o(x)/x = 0 . Wr denotes an open ball with an arbitrary center and
radius r. An open ball with radius r centered at x is denoted by Wr(x). The
remaining notation is introduced in the text as needed.

2 Background

In case of n-dimensional unconstrained optimization the search is conducted
in R

n.

Definition 1 Partitioning P(Rn) divides R
n into a set of partitions P i such

that
⋃

i P
i = R

n and P i ∩ P j 6= ∅ iff i = j.

3

Now suppose every partition P i is assigned a representative point pi ∈ P i.
Let diam(P i) = maxx,y∈P i ‖x − y‖ denote the diameter of a partition.

Definition 2 A grid G(Rn,P) is a one to one map between the set of repre-
sentative points and the partitioning P(Rn).

Lemma 3 Suppose that for a given partitioning there exist 0 < ω < Ω such
that for every partition P i we can find a ball Wω ⊆ P i and a ball WΩ such
that P i ⊆ WΩ. Then for every compact set C the number of partitions P i for
which P i ∩ C 6= ∅ is finite.

PROOF. Suppose this is not true. Then there must exist an infinite set of
partitions S = {P 1, P 2, ...} such that every member of this set has a nonempty
intersection with C. Since there exists Ω > 0 such that every partition has a
ball WΩ ⊇ P i associated with it we can choose a compact set C1 ⊇ C for which
P i ⊆ C1 for all P i ∈ S.

Choose a finite subset of S and denote it S1. C cannot be a subset of
⋃

P i∈S1
P i

as then S would be finite. So there must exist some P k1 /∈ S1 and P k1 ∈ S
for which P k1 ∩ C 6= ∅. Replace S with S \ {P ki} and choose a new S1. By
repeating this reasoning we obtain an infinite sequence of partitions {P ki}∞i=1

that have a nonempty intersection with C and lie in a compact set C1. Every
partition from this sequence has a corresponding inscribed ball Wω ⊆ P i. The
centerpoints of these balls constitute an infinite sequence within compact set
C1 and the distance between any two points xi, xj from this sequence is at
least ω. Thus the sequence can have no limit points, which contradicts the
compactness of C1. 2

Definition 4 A grid restrainment operator RG,P is a map R
n → G(Rn,P)

such that RG,P(x) = pi iff pi ∈ P i and x ∈ P i.

Grid restrainment of an x ∈ R
n results in a point RG,P(x) that more or less

differs from x (grid restrainment error). If the partition diameter has an upper
bound this error also has an upper bound δ(G,P) = maxx∈Rn ‖RG,P(x)−x‖ ≤
maxi diam(P i).

Definition 5 f̃(x) is a (G,P) approximation to f(x) if f̃(x) = f(RG,P(x)).

Note that the value of f̃ is constant across every partition.

Lemma 6 Let f̃(x) be a (G,P) approximation to f(x) and let the require-
ments of lemma 3 hold for P. Suppose an algorithm starts out with x0 and the
level set L = {x : f(x) ≤ f(x0)} is compact. If the i-th step of the algorithm
produces xi for which f̃(xi) < f̃(xi−1) then the algorithm terminates in a finite
number of steps.

4

PROOF. Obviously f̃(xi) < f̃(x0). Since the requirements of lemma 3 hold
and L is compact, there exists a compact set L̃ ⊇ {x : f̃(x) ≤ f̃(x0)}. Lemma
3 states that L̃ can be covered with a finite number of partitions. f̃ is constant
over every one of these partitions by definition so the algorithm can choose
between finitely many values of f̃ and subsequently there are only finitely
many f̃(xi) with f̃(xi) < f̃(x0). 2

The following 3 definitions establish the notions of locally Lipschitz function,
Clarke generalized derivative, and strict differentiability ([6], [3]).

Definition 7 A function f is locally Lipschitz around x if there exist K > 0
and δ > 0 such that |f(x1) − f(x2)| ≤ K‖x1 − x2‖ for any x1,x2 ∈ Wδ(x).

Definition 8 Suppose f is locally Lipschitz around x. Then

f ◦(x;d) = lim
y→x

sup
t↓0

f(y + td) − f(y)

t
(2)

is the Clarke generalized derivative [6].

Definition 9 A function f is strictly differentiable at x if there exists w ∈ R
n

and δ > 0 such that limy,z→x, y 6=z
f(y)−f(z)−wT(y−z)

‖y−z‖
= 0 where y, z ∈ Wδ(x). w

is the strict derivative of f at x.

If a function is strictly differentiable at x then it is also locally Lipschitz around
x and f ◦(x;d) = wTd. Continuous differentiability at x implies f ◦(x;d) =
(∇f(x))Td and results in f being strictly differentiable at x.

Definition 10 A set D = {d1,d2, ...,dr} positively spans A if for every x ∈ A
there exists a set of nonnegative scalars αi such that x =

∑r
i=1 αidi.

In other words vectors x ∈ A are in the positive span of D. The quality of a
positive spanning set can be expressed as

ε(D) = min
v∈Rn,‖v‖6=0

max
d∈D

dTv

‖d‖‖v‖
< 1 (3)

ε(D) > 0 implies that D positively spans R
n (for proof see [4]).

Now suppose that the set D̃ is obtained from D by restraining the members
of D to grid G using partitioning P. Let dmin denote the shortest member of
D. Then (provided that no member of D̃ has zero length)

5

ε(D̃) ≥
ε(D) − δ(G,P)/‖dmin‖

1 + δ(G,P)/‖dmin‖
(4)

See [4] for proof. If the members of D are obtained by subtracting two vectors
(e.g. di = ai − bi) the grid restrainment of vectors ai and bi results in the
following estimate for D̃.

ε(D̃) ≥
ε(D) − 2δ(G,P)/‖dmin‖

1 + 2δ(G,P)/‖dmin‖
(5)

The proof again goes along the lines of [4], except that the grid restrainment
error must be applied twice.

Definition 11 Finite set D∞ ⊆ R
n is a limit point of a sequence of sets

{Dk}
∞
k=1 if there exists a subsequence {Dik}

∞
k=1 such that for every d ∈ D∞

lim
k→∞

min
d′∈Dik

‖d− d′‖ = 0 (6)

The following definition will simplify the proceedings for establishing the con-
vergence theory of an algorithm.

Definition 12 A constellation X is an ordered set of m + 1 points {x0,
x1, ..., xm} where m > 0. Vector x0 is the origin and set Bξ(X) =

{x1−x0

ξ
, x2−x0

ξ
, ..., xm−x0

ξ
} is the ξ-basis of constellation X . Note that a ξ-basis

is not necessarily a linear basis for Rn.

By restraining every member of Xk to grid Gk using partitioning Pk we get a
constellation denoted by X̃k. Let εk, ε̃k, and δk denote ε(Bξk

(Xk)), ε(Bξk
(X̃k)),

and δ(Gk,Pk), respectively.

Lemma 13 For a given sequence of constellations {Xk}
∞
k=1 choose a sequence

of positive scalars {ξk}
∞
k=1, a sequence of partitionings {Pk}

∞
k=1, and a sequence

of grids {Gk}
∞
k=1. Suppose there exist α > 0 and Λ > 0 such that for every

b ∈ Bξk
(Xk) and all Xk

‖b‖ ≤ Λ, (7)

εk‖b‖ − 2δk/ξk ≥ α. (8)

then there exists a limit point B̃∞ of sequence {Bξk
(X̃k)}

∞
k=1 and every B̃∞

positively spans R
n.

6

PROOF. The nature of grid-restrainment implies bounds on b̃ ∈ Bξk
(X̃k)

where b is the corresponding member of Bξk
(Xk)

‖b‖ − 2δk/ξk ≤ ‖b̃‖ ≤ ‖b‖ + 2δk/ξk. (9)

Since εk‖b‖ < ‖b‖ we can use (7) and (8) to obtain 2δk/ξk < Λ − α and

α ≤ ‖b̃‖ < 2Λ − α. (10)

From (5), (7), and (8) we can write

ε̃k ≥
εk − 2δk/(ξk‖b

min‖)

1 + 2δk/(ξk‖bmin‖)
=

‖bmin‖εk − 2δk/ξk

‖bmin‖ + 2δk/ξk
>

α

2Λ − α
(11)

Now since ξk and δk are both positive, we get

0 < δk/ξk ≤ εk‖b‖ − α ≤ εkΛ − α < Λ − α (12)

Equation (10) guarantees the existence of limit point B̃∞ and assures us that
no limit point contains zero vectors. The latter is a consequence of (8) and
does not require an additional lower bound λ on ‖b‖ as in [4]. From (11) and
(12) it follows that ε̃k > α/(2Λ− α) > 0. This means that ε(B̃∞) > 0 and B̃∞

positively spans R
n. 2

The following lemma is the basis for proving the convergence of our algorithmic
framework.

Lemma 14 Assume a sequence of points {xk}
∞
k=1, a sequence of vectors

{bk}
∞
k=1, and a sequence of positive scalars {ξk}

∞
k=1 converging to x∞, b∞,

and 0, respectively. Let f be locally Lipschitz around x∞. If f(xk + ξkbk) ≥
f(xk) − o(ξk‖bk‖) holds for every member of the sequence then the Clarke
generalized derivative f ◦(x∞;b∞) is nonnegative.

PROOF. From the assumption on the function value at xk we can write

f(yk + ξkb∞) − f(yk) + f(yk) − f(xk)

ξk

≥ −
o(ξk‖bk‖)

ξk

(13)

7

where yk = xk + ξkuk and uk = bk − b∞. By taking the lim supk→∞ the
right-hand side term vanishes.

lim sup
k→∞

f(yk + ξkb∞) − f(yk)

ξk
+ lim sup

k→∞

f(xk + ξkuk) − f(xk)

ξk
≥ 0 (14)

Since uk approaches 0 and f is Lipschitz continuous near x∞, the second term
vanishes. The first term is a lower bound for f ◦(x∞;b∞) which in turn must
also be nonnegative. 2

Lemma 15 Suppose f is strictly differentiable at x and f ◦(x;b) ≥ 0 for all
b ∈ B = {b1,b2, ...,br}. Then f ◦(x;v) ≥ 0 for all v that are in the positive
span of B. If f is continuously differentiable at x and B positively spans R

n,
x is a stationary point of f .

PROOF. Since v lies in the positive span of B, it can be expressed as v =
∑r

i=1 αibi where αi ≥ 0. Strict differentiability at x implies f ◦(x;b) = wTb.
By applying it to f ◦(x;v) we get

f ◦(x;v)=wTv =
r

∑

i=1

αiwTbi =
r

∑

i=1

αif ◦(x;bi) ≥ 0 (15)

For the second part (x being a stationary point of f): B positively spanning
R

n implies f ◦(x;v) = wTv ≥ 0 for all v ∈ R
n, so w can only be 0. For

continuously differentiable functions w = ∇f(x) and x is a stationary point
of f . 2

The following algorithmic framework for unconstrained optimization will be
the subject of discussion in the remainder of the paper.

Algorithm 1 Partitioning based algorithmic framework

(1) Set k := 1. Choose an initial point x1 and a partitioning P1 with a set of
representative points forming grid G1. Let f̃k be a (Gk,Pk) approximation
to f : R

n → R.
(2) Evaluate f̃k for a finite set of points and let x′ be the one with the lowest

f̃k value.
(3) If f̃k(x

′) < f̃k(xk) set xk := x′ and go back to step 2.
(4) Generate a constellation Xk comprising origin x0

k = xk and m additional
points.

8

(5) If there exists x′ ∈ Xk for which f̃k(x
′) < f̃k(xk) − o(‖x′ − xk‖), set

xk := x′ and go back to step 2.
(6) Set xk+1 := xk, choose a new partitioning Pk+1 with a new set of repre-

sentative points Gk+1, and increment k. Go back to step 2.

We make the following assumptions for our framework.

A1 For every partitioning Pk there exist ω and Ω (0 < ω < Ω) such that for
every partition P i relations Wω ⊆ P i and P i ⊆ WΩ hold.

A2 There exists a sequence of scalars {ξk}
∞
k=1 and Λ > 0 such that constel-

lations Xk for which algorithm 1 ends up at step 6 satisfy

‖b‖ ≤ Λ ∀b ∈ Bξk
(Xk). (16)

A3 There exists α > 0 such that partitionings Pk and grids Gk for which
algorithm 1 ends up at step 6 satisfy

εk‖b‖ − 2δk/ξk ≥ α ∀b ∈ Bξk
(Xk). (17)

A4 f is continuously differentiable with compact level sets.

Now we are prepared for our main result.

Theorem 16 Suppose ξk goes to 0 as k approaches infinity. Then assuming
A1-A4 all limit points of sequence {xk}

∞
k=1 (where xk is collected at step 6 of

algorithm 1) are stationary points of f .

PROOF. Assumption A1 fulfills the requirements of lemma 3. Since algo-
rithm 1 replaces xk only if it decreases the value of f̃(xk) and the level sets
of f are compact, we can invoke lemma 6 which ensures us that steps 2-5 are
repeated finitely many times before step 6 is reached. This means that step
6 is visited infinitely many times. Therefore we can form infinite sequences
of partitionings Pk, grids Gk, constellations Xk, and constellation origins x0

k

collected at the beginning of step 6.

The sequence of grid-restrained constellation origins {x̃0
k}

∞
k=1 (where x̃0

k =
RGk,Pk

(x0
k)) satisfies f(x̃0

k) ≤ f(x̃0
k−1). Care must be taken to make sure that

f̃(x0
k) does not change when a new partitioning with a new set of representative

points is chosen in step 6. This can be achieved if the old and the new grid
share a common representative point p for which RG,P(x0

k) = p. Since the
level sets of f are compact the sequence {x̃0

k}
∞
k=1 has at least one limit point

x̃0
∞.

Due to assumptions A2 and A3 the requirements of lemma 13 are satisfied
for sequences {Xk}

∞
k=1, {ξk}

∞
k=1, {Pk}

∞
k=1, and {Gk}

∞
k=1. Therefore a limit point

9

B̃∞ of sequence {Bξk
(X̃k)}

∞
k=1 exists and all such limit points positively span

R
n.

Now choose a pair of limit points x̃0
∞ and B̃∞ and a subset of indices K such

that the corresponding subsequence of {x̃0
k}

∞
k=1 and {Bξk

(X̃k)}
∞
k=1 converges

to x̃0
∞ and B̃∞, respectively. Replace all sequences with subsequences of them-

selves where k ∈ K. This makes the proof valid for every limit point x̃0
∞.

For any b̃∞ ∈ B̃∞ we can form a sequence of vectors {b̃k}
∞
k=1 where b̃k ∈

Bξk
(X̃k) such that it converges to b̃∞ ∈ B̃∞. A2 asserts that δk ≤ ξk(εkΛ−α)/2.

Together with (12) it means that the grid-restrainment error goes to 0 as ξk

goes to 0.

The sequence of grid-restrained constellation origins {x̃0
k}

∞
k=1 satisfies f(x̃0

k +
ξkb̃k) ≥ f(x̃0

k) + o(ξk‖bk‖). By looking at the proof of lemma 14 we can see
that it is still valid, even if we replace o(ξk‖b̃k‖) with o(ξk‖bk‖). Since the
continuous differentiability of f implies local Lipschitz continuity we satisfy
all requirements of lemma 14 and conclude f ◦(x∞; b̃∞) ≥ 0.

Recall that B̃∞ positively spans R
n. The continuous differentiability of f and

lemma 15 result in ∇f(x̃0
∞) = 0. δk → 0 implies ‖x̃k − xk‖ → 0 and together

with continuous differentiability of f result in ‖∇f(xk)‖ → 0. 2

3 The successive approximation simplex algorithm

3.1 The algorithm

The NM algorithm tries to find a local minimum of f by moving a polytope
with n + 1 vertices (simplex) through the search space. The movement is
achieved with simple geometric operations on the set of simplex vertices guided
solely by their relative ordering according to the value of f . Its popularity is
probably a consequence of its simplicity and the fact that for many practical
optimization problems it performs astoundingly well. An overview of various
modifications to the original NM algorithm can be found in [4].

Denote the simplex vertices with x0,x1, ...,xn and relabel them such that
f(x0) ≤ f(x1) ≤ ... ≤ f(xn) holds. To simplify the notation f i is used for
f(xi). The centroid of the n vertices with the lowest value of f is defined as
xcb = 1

n

∑n−1
i=0 xi. A candidate point for replacing xn lies on the line defined

by xcb and xn and can be expressed as x(γ) = xcb + γ(xcb − xn).

Several candidate points for replacing xn are examined. The candidates are xr,
xe, xoc, and xic with the corresponding values of γ denoted by γr, γe, γoc, and

10

γic. In the literature they are usually referred to as the reflection, expansion,
outer contraction, and inner contraction point. If none of the above mentioned
candidates is good enough to replace xn the simplex is shrunk toward x0 using
the formula x0 + γs(x

i − x0) for i = 1, 2, ..., n.

Values of γ satisfy the following requirements

0 < γr < γe, γe > 1, 0 < γoc < 1, −1 < γic < 0, 0 < γs < 1. (18)

In the original paper by Nelder and Mead [18] the following values were pro-
posed: γr = 1, γe = 2, and γoc = −γic = γs = 0.5. Algorithm 2 is the summary
of the original Nelder-Mead algorithm as stated by [13]. This algorithm differs
slightly from the original version in [18] where several ambiguities are present.

The initial simplex can be chosen randomly or by using some predefined rules.
Next f is evaluated at the simplex vertices upon which iterations of algorithm
2 are repeated until some stopping condition is satisfied.

Algorithm 2 One iteration of the NM algorithm:

(1) Order the simplex.
(2) Evaluate f r = f(xr). If f r < f 0 evaluate f e = f(xe).

If f e < f r replace xn with xe, otherwise replace it with xr.
(3) If f 0 ≤ f r < fn−1, replace xn with xr.
(4) If fn−1 ≤ f r < fn, evaluate f oc = f(xoc).

If f oc ≤ fn replace xn with xoc.
(5) If fn ≤ f r, evaluate f ic = f(xic).

If f ic ≤ fn, replace xn with xic.
(6) If xn wasn’t replaced, shrink the simplex toward x0.

In the remainder of the paper we assume box-shaped partitions of the form
P = {x = [x1, x2, ..., xn] : yi −∆i/2 ≤ xi < yi + ∆i/2 where y = [y1, y2, ..., yn]
denotes the representative point and ∆ = [∆1, ∆2, ..., ∆n] is the grid density.
The following grid will be assumed G = {y : y = z +

∑n
i=1 N iei∆i, N i ∈ Z}

where ei denotes the i-th unit vector and z is the grid origin. For such a
combination of partitioning and grid δ = ‖∆‖/2.

In SANM algorithm (see algorithm 3) we replace function f which is used
in the original NM algorithm with a sequence of approximations {f̃i}

∞
i=1 over

gradually finer partitionings. The original values of the simplex scaling coef-
ficients were used except for γe = 1.2 and γs = 0.25. The value of γe is from
[4] where it was found that this value improves the algorithm’s performance
compared to the original γe = 2. The acceptance criterion for contraction steps
is more strict than in the original NM algorithm (f̃ oc < f̃n and f̃ ic < f̃n).

11

The algorithm starts by constructing a simplex around the initial point x0.
The vertices of the initial simplex consist of the initial point x0 and n addi-
tional points obtained by perturbing the individual coordinates of x0 by 5%
or 0.00025 if the respective coordinate value is zero. Let xi,j denote the j-th
component of vector xi. The initial grid origin is at x0 and the initial grid
scaling can be expressed as ∆j = 1

10
maxi=1,2,...,n |x

i,j − x0,j |.

Most of the time step 1 is being executed. The original NM algorithm is
considered to fail if none of the four trial points (xr, xe, xoc, and xic) is
accepted.

One of the reasons why the original NM algorithm fails is the simplex limit-
ing to a n′ < n dimensional object. When this happens the search becomes
more and more confined to a linear subspace of R

n. The algorithm’s progress
slows down and ultimately results in inner or outer contraction step not being
accepted. Let f̃best denote the f̃ value at the best simplex point when this
happens.

After a failed contraction step the simplex is checked for degeneracy (algorithm
3, step 1). Let vi = xi − x0, i = 1, 2, ..., n denote the simplex side vectors and
c some positive constant. Keeping the interior angles bounded away from 0
implies the following:

|detV | = |det[v1,v2, ...,vn]| ≥ cn
n

∏

i=1

‖vi‖. (19)

If (19) is violated the simplex is reshaped (step 3 of algorithm 3). The reshape
keeps the best point intact and changes the remaining n points. Simplex side
vectors are ordered so that ‖v1‖ ≥ ‖v2‖ ≥ ... ≥ ‖vn‖ and matrix V =
[v1,v2, ...,vn] is constructed. The matrix is factored using QR decomposition
(V = QR). The resulting orthogonal basis D = {d1,d2, ...,dn} is obtained
from

di = sign(Rii) max
(

λn1/2‖∆‖, min(|Rii|, Λn1/2‖∆‖)
)

qi

Where sign(x) is -1 for x < 0 and 1 otherwise. Our implementation uses
c = 10−6, λ = 2, and Λ = 252.

The absolute value of the determinant in (19) can be calculated incrementally
like in [19]. This is due to the fact that no grid restrainment is performed
when a new point is accepted into the simplex (as opposed to [4]). The new
value is obtained by multiplying the old value with γr, γe, γoc, γic, or (γe −
γr)/γr when xr, xe, xoc, xic, or xpe is accepted, respectively. xpe denotes the

12

pseudo-expand point [19] defined as xpe = x0 + (γe/γr − 1)(x0 − xcw) where
xcw = 1/n

∑n
i=1 xi. When the trial steps are shrinked, the determinant is

multiplied by γn
s . The only time the determinant needs to be calculated from

scratch is at the start of the algorithm and at every reshape. But since the
reshaped simplex is orthogonal the absolute value of the determinant can be
obtained as the product of simplex side lengths. The simplified evaluation of
the determinant reduces the number of linear algebra operations compared to
the GRNM algorithm where a QR decomposition is performed every time the
determinant is evaluated.

The optional reshape is followed by the so-called pseudo-expand step [19]
(step 4 of algorithm 3). The best point x0 is treated as a result of a successful
reflection step which should be followed by an expansion step resulting in the
pseudo-expand point xpe. The pseudo-expand point replaces the best point of
the simplex if f̃pe < f̃ 0. If any of the points in the resulting simplex is better
than f̃best the algorithm continues with the NM algorithm.

If no reshape happened at step 3 a reshape takes place at step 7. What follows
is a loop that repeatedly tries 2n trial steps around the best point in order
to find a point that is better than x0. n points are tried in one pass of the
loop. Since the reshaped simplex is orthogonal the 2n steps form a positive
spanning set (a maximal positive basis [10]) for R

n.

If the 2n points fail to produce descent, the trial steps are shrinked by γs

(this step is similar to the shrink step in the original NM algorithm). When
the trial steps become short compared to the grid-restrainment error the grid
and the partitioning are refined. This implies a new (finer) approximation to
f . Care must be taken to make sure that f̃(x0) does not change as a result
of the refinement. This is achieved by choosing the new grid origin (z) at
RGold,Pold(x0) and moving x0 to z. Here Gold and Pold denote the grid and the
partitioning before refinement.

Let dmin, dmin,i, and zi denote the shortest trial step vector, its components,
and the components of the grid origin, respectively. The components of the

new grid scaling vector are obtained as ∆i = 1
128λn

max(|dmin,i|, ‖dmin‖
n1/2

). Due
to the finite precision of floating point representation there is an inherent grid
present. When a component of the grid scaling vector reaches the precision
of the floating point representation (∆i < max(τr|z

i|, τa)) grid restrainment is
no longer applied to the i-th component of vectors and the inherent floating
point grid takes over. Constants τr and τa are the relative and the absolute
precision. The SANM algorithms uses τr = 2−52 and τa = 10−100, respectively
(for 64-bit IEEE floating point τr ≥ 2−52 and τa ≥ 10−323).

When a trial step produces descent with respect to x0 the loop is abandoned,
a new simplex is formed, and the algorithm returns to step 1.

13

The stopping condition is based on the size of the simplex and the
range of the function values that correspond to the simplex points. Let
vi,j and x0,j denote the j-th component of vi and x0. The algorithm is
stopped when maxi=1,2,...,n |f̃

i − f̃ 0| < max(βf , βr|f̃
0|) and maxi=1,2,...,n |v

i,j| <
max(βx, βr|x

0,j |) for j = 1, 2, ..., n. In the implementation the following values
were used: βr = 10−16, βx = 10−9, and βf = 10−16.

Algorithm 3 Successive approximation simplex algorithm:

(1) Repeat iterations of the original NM algorithm without shrink steps and
with modified acceptance criteria for contraction points. Instead of f(x)
use its (G,P) approximation f̃(x). When an iteration not replacing xn

(NM failure) is encountered, go to step 2.
(2) xbest = arg minx∈{x0,x1,...,xn} f̃(x) and f̃best = f̃(xbest).
(3) If the simplex shape violates (19), reshape it by forming an orthogonal

basis D = {d1,d2, ...,dn} subject to λn1/2‖∆‖ ≤ ‖di‖ ≤ Λn1/2‖∆‖ for
all i = 1, 2, ..., n. Construct a simplex comprising x0 and xi = x0 + di

where i = 1, 2, ..., n, and evaluate f̃ at the new simplex vertices.
(4) Order the simplex and evaluate f̃ at the pseudo-expand point to obtain

f̃pe = f̃(xpe). If min(f̃pe, f̃ 0, f̃ 1, ..., f̃n) ≥ f̃best go to step 7
(5) If f̃pe < f̃ 0 replace x0 with xpe.
(6) Go to step 1.
(7) If a reshape happened at step 3 set l = 1, otherwise set l = 0 and reshape

the simplex now.
(8) Repeat the following steps.

(a) If l > 0, reverse vectors di.
(b) If l ≥ 2 and l mod 2 = 0

• Shrink vectors di by a factor of 0 < γs < 1.
• If ‖dmin‖ < λn1/2‖∆‖

choose the new grid origin z at RG,P(x0), set x0 to z, and
refine the partitioning P and the grid G (implies a new f̃).

(c) Evaluate f̃ at x0 + di for i = 1, 2, ..., n.
(d) Set l = l + 1.
Until stopping condition is satisfied or mind∈D f̃(x0 + d)) < f̃(x0).

(9) Construct a new simplex comprising x0 and x0 + di where i = 1, 2, ..., n.
(10) If stopping condition is satisfied finish, else go to step 1.

Theorem 17 Suppose the stopping condition is removed from algorithm 3 and
infinite numerical precision is available. Then for a continuously differentiable
f with compact level sets the algorithm converges to a set of points x for which
‖∇f(x)‖ = 0.

PROOF. All we need to do is prove that algorithm 3 adheres to the frame-
work specified by algorithm 1, assumptions A1-A3 are satisfied, and ξk goes

14

to 0. Assumption A4 is satisfied by theorem’s requirements.

Steps 1-6 correspond to steps 2-3 of the framework. The rest corresponds to
steps 4-6. The set {x0,x0 + d1,x0 − d1,x0 + d2,x0 − d2, ...} is constructed in
two consecutive iterations of loop at step 8 of algorithm 3 before the grid and
the partitioning are refined. This set is the constellation that leads to step 6
of the framework.

The nature of the partitioning (uniform box-shaped partitions) makes sure
assumption A1 is satisfied. Since D is a linear orthogonal basis for R

n the set
{d1,−d1,d2,−d2, ...} positively spans R

n with ε = 1/n1/2. Since λn1/2‖∆‖ ≤
‖d‖ ≤ Λn1/2‖∆‖. We satisfy assumption A2 by choosing ξ = n1/2‖∆‖. A2
also holds when the basis is shrunk in the loop at step 8.

Since D is an orthogonal linear basis εk = n−1/2. The grid-restrainment error is
δ = ‖∆‖/2. We can deduce εk‖b‖−2δ/ξ = (‖b‖−1)/n1/2 ≥ (λ−1)/n1/2 = α
and see that assumption A3 is satisfied for all λ > 1.

Recall that the components of the new grid scaling vector are chosen as ∆i =
1

128λn
max(|dmin,i|, ‖dmin‖

n1/2
). From | dmin,i| ≤ ‖dmin‖ we can estimate ∆new,i ≤

‖dmin‖/(128λn). The grid is refined when ‖dmin‖ < λn1/2‖∆‖. This means
that ∆new,i < ‖∆‖/(128n1/2) and ‖∆new‖ < ‖∆‖/128 which in the end result
in ‖∆‖ → 0. 2

A short note may be appropriate here. Remember from (12) that α < Λ must
hold. Since α = (λ − 1)/n1/2 and λ < Λ this is true, indeed.

3.2 The GRNM simplex algorithm in the proposed framework

The GRNM algorithm [4] also conforms to the presented framework. The part
that guarantees GRNM’s convergence is the equivalent of loop at step 8 of
algorithm 3. The only difference is that in GRNM grid restrainment does not
affect x0 (since x0 always lies on the grid). The proposed convergence analysis
is still valid. If, however, we consider that grid restrainment is applied only to
one endpoint of a vector (using equation 4 instead of equation 5) assumption
A3 can be relaxed to εk‖b‖ − δk/ξk ≥ α.

3.3 Results of numerical testing

The sufficient descent-based simplex algorithm (SDNM) [19], the GRNM al-
gorithm [4], and algorithm 3 (SANM) were implemented in MATLAB R14.

15

The Moré-Garbow-Hillstrom set of test functions [17] was used for algorithm
evaluation. Beside these functions the standard quadratic and McKinnon [16]
function were also used. The starting simplex was chosen in the same manner
as in [19], except for the McKinnon (alt.) function where McKinnon’s initial
simplex, which causes the original NM algorithm to fail, was used. The results
of the testing are in table 1. NF denotes the number of function evaluations.
The best (lowest) function value obtained by the algorithms is also listed.

The results were compared to the results of the sufficient descent based al-
gorithm [19] (SDNM) and the grid-restrained algorithm [4] (GRNM). For all
test functions SANM found a stationary point of the test function. For the
Bard 3D function SDNM and SANM found different stationary points. Similar
happened for GRNM and SANM on the trigonometric function. The functions
were excluded from the comparisons.

When SANM and SDNM are compared there were 15 functions for which
algorithms obtained the same final function value. SDNM was better on 5
functions and SANM on 18 functions. If we compare the number of function
evaluations, SDNM was better on 22 problems and SANM on 16.

If we consider both the number of function evaluations and the final function
value we can say, that algorithm A outperforms algorithm B on some test
problem if it obtains the same or better final function value with less function
evaluations, or if it obtains a better final function value with the same number
of evaluations. According to this criterion SDNM outperformed SANM on 11
test functions and SANM outperformed SDNM on 14 test functions.

On the other hand if we compare GRNM and SANM, we get the same final
function value on 15 problems, GRNM is better on 4 problems and SANM on
19 problems. The result regarding the number of function evaluations is 19-19.
GRNM outperforms SANM on 9 problems and SANM outperforms GRNM
on 17 problems.

Judging from the two comparisons we conclude that SANM performs better
than GRNM and SDNM on the test suite.

To compare the performance for problems of increasing dimensionality we
tested all three algorithms on four variably dimensional problems: the stan-
dard quadratic function (up to n = 100), the extended Rosenbrock’s function,
extended Powell’s singular function, and variably dimensional function (up
to n = 50). All these function have a global minimum where f = 0. The
optimization was stopped when f reached values below 10−14 or when the
number of function evaluations exceeded 106. The results (number of function
evaluations) are plotted in figure 1.

For quadratic problems of lower dimension SDNM was slightly faster than the

16

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

Quadratic

dimension

SDNM
GRNM
SANM

0 10 20 30 40 50
10

2

10
3

10
4

10
5

10
6

Extended Rosenbrock

dimension

SDNM
GRNM
SANM

0 10 20 30 40 50
10

2

10
3

10
4

10
5

10
6

Extended Powell singular

dimension

SDNM
GRNM
SANM

0 10 20 30 40 50
10

1

10
2

10
3

10
4

10
5

10
6

Variably Dimensional

dimension

SDNM
GRNM
SANM

Fig. 1. Number of function evaluations for different problem dimensions.

remaining two algorithms. For n < 50 the worst performance was exhibited
by the GRNM algorithm. For problems of higher dimension (n > 50) GRNM
performs similarly as SDNM and SANM is slightly faster than SDNM. On the
extended Rosenbrock function GRNM and SANM outperform SDNM for prob-
lems with n ≤ 20. For higher dimensions GRNM is slower and SANM performs
roughly the same and SDNM. On the extended Powell function GRNM and
SANM significantly outperform SDNM. SANM is slightly faster than GRNM.
The situation is similar for the variably dimensional function.

In general SANM performs better than GRNM on the four variably dimen-
sional test problems. We assume that this is due to the grid restrainment
directly affecting the simplex shape in GRNM. Restraining the simplex ver-
tices to a grid can significantly change the longest side of the simplex (which
in general follows the function’s gradient), especially when ‖∆‖ is of the same
order of magnitude as the simplex side length.

Based on the comparison of the Moré-Garbow-Hillstrom test suite results and
the performance for higher dimensional functions (figure 1) we conclude that
the proposed SANM performs better than SDNM and GRNM.

17

4 Conclusion

We presented an algorithmic framework for unconstrained derivative-free op-
timization based on successive approximation. The framework relies on the
grid-restrainment and search space partitioning to ensure that a subsequence
of iterates exists that converges to a local minimizer of a continuously dif-
ferentiable function. The search space is divided into partitions that must
satisfy some mild assumptions. Every partition has a representative point.
The representative points form a grid which can be non-uniform in shape. If
the partitions are bound in size from above and below the grid has a finite
intersection with any compact set.

We defined a grid restrainment operator that maps every point of a partition
to the respective representative point. The norm of the difference between the
original and the mapped point (grid-restrainment error) has an upper bound
not greater than the partition diameter. The partitioning and the grid are
used to construct a piecewise-constant approximation to function f .

The finiteness of the number of partitions that have a non-empty intersection
with a given compact set guarantees that the search always reaches a point
where no further progress can be made if the grid and the partitioning are
not refined. We prove that a subsequence of points at which refinement must
happen, converges to some stationary point of f .

We defined a convergent variant of the Nelder-Mead (NM) algorithm within
the proposed framework (SANM). In place of function f the algorithm uti-
lizes its piecewise-constant approximation corresponding to the current grid
and partitioning. This makes it possible to omit the grid-restrainment of sim-
plex vertices and simplifies the algorithm compared to the grid-restrained NM
algorithm (GRNM) [4] since the determinant of the simplex sides can be cal-
culated in a very straightforward manner. It also reduces the number of linear
algebra operations compared to GRNM. We showed that GRNM conforms to
the presented framework.

The proposed algorithm was tested on the Moré-Garbow-Hillstrom (MGH) set
of test problems and on some multidimensional test problems. The results were
compared to the results of the GRNM algorithm and the sufficient descent NM
algorithm (SDNM) [19]. The proposed algorithm outperformed GRNM and
SDNM.

We attribute the performance advantage of SANM over GRNM to the fact
that SANM does not apply grid-restrainment to simplex vertices. Grid re-
strainment can significantly change the direction of the longest simplex side
which in general points in a descent direction. The effect of grid-restrainment
is most pronounced when the simplex side length is comparable to the grid-

18

restrainment error.

The proposed framework is a powerful tool for defining new provably conver-
gent optimization algorithms. Within its scope it is possible to easily upgrade
existing well established heuristics that lack a convergence theory (like the
Nelder-Mead algorithm) into new algorithms that can guarantee convergence
to a local minimizer.

References

[1] C. Audet, J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM J.

Optim. 11 (2003), 859–869.

[2] C. Audet, J. E. Dennis, Jr., Mesh adaptive direct search algorithms for
constrained optimization, SIAM J. Optim. 17 (2006), 188–217.

[3] J. M. Borwein, A. S. Lewis, Convex Analysis and Nonlinear Optimization:

Theory and Examples (Springer, 2000).

[4] Á. Bűrmen, J. Puhan, T. Tuma, Grid restrained Nelder-Mead algorithm,
Comput. Optim. Appl., 34 (2006), 359–375.

[5] D. Byatt, A convergent variant of the Nelder-Mead algorithm, master’s
thesis, Mathematics and Statistics Department, University of Canterbury,
Christchurch, NZ, 2000.

[6] F. H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

[7] I. D. Coope, C. J. Price, Frame based methods for unconstrained optimization,
J. Optim. Theory Appl. 107 (2000), 261–274.

[8] I. D. Coope, C. J. Price, On the convergence of grid-based methods for
unconstrained optimization, SIAM J. Optim. 11 (2001), 859–869.

[9] C. J. Price, I. D. Coope, Frames and grids in unconstrained and linearly
constrained optimization: a nonsmooth approach, SIAM J. Optim. 14 (2003),
415–438.

[10] C. Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954),
733–746.

[11] R. Hooke, T. A. Jeeves, Direct search solution of numerical and statistical
problems, J. ACM, 8 (1961), 212–229.

[12] T. G. Kolda, R. M. Lewis, V. Torczon, Optimization by direct search: new
perspectives on some classical and modern methods, SIAM Rev. 45 (2003),
385–482.

[13] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright Convergence properties
of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim. 9

(1998), 112–147.

19

[14] R. M. Lewis, V. J. Torczon, Rank ordering and positive bases in pattern search
algorithms, Tech. Report 96-71, ICASE NASA Langley Research Center,
Hampton, VA, USA, 1996.

[15] R. M. Lewis, V. J. Torczon, M. W. Trosset, Direct search methods: Then and
now, J. Comput. Appl. Math. 124 (2000), 191–207.

[16] K. I. M. McKinnon, Convergence of the Nelder-Mead simplex method to a
non-stationary point. SIAM J. Optim. 9 (1998), 148–158.

[17] J. J. Moré, B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization
software, ACM Trans. Math. Software 7 (1981), pp. 17–41.

[18] J. A. Nelder, R. Mead, A simplex method for function minimization, The

computer Journal 7 (1965), 308–313.

[19] C. J. Price, I. D. Coope, D. Byatt, A convergent variant of the Nelder-Mead
algorithm, J. Optim. Theory Appl. 113 (2002), 5–19.

[20] V. J. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel
Machines, PhD thesis, Department of Mathematical Sciences, Rice University,
Houston, TX, USA, 1989.

[21] V. J. Torczon, On the convergence of pattern search methods, SIAM J. Optim.

7 (1997), 1–25.

[22] M. H. Wright, Direct search methods: once scorned, now respectable, in
Griffiths, D.F. (Ed.) Numerical Analysis 1995, Addison Wesley Longman,
Edinburgh Gate, Harlow, 1996, pp. 191–208.

20

Table 1
Comparison of SDNM, GRNM, and SANM on the Moré-Garbow-Hillstrom set of
test problems.

SDNM GRNM SANM

Function n NF Minimum NF Minimum NF Minimum

Rosenbrock 2 285 1.39058e-17 517 1.79285e-17 538 8.556045e-20

Freudenstein and Roth 2 217 48.9843 274 48.9843 333 48.9843

Powell badly scaled 2 969 4.23980e-25 1245 1.87891e-25 1464 4.44784e-25

Brown badly scaled 2 498 7.99797e-17 595 4.45581e-17 579 2.32382e-12

Beale 2 191 2.07825e-18 183 1.13556e-18 151 0.00000

Jennrich and Sampson 2 157 124.362 149 124.362 228 124.362

McKinnon 2 426 -0.250000 380 -0.250000 231 -0.250000

McKinnon (alt) 2 351 -0.250000 210 -0.250000 103 -0.250000

Helical valley 3 342 9.83210e-16 591 1.64083e-16 497 5.67580e-19

Bard 3 1134 17.4287 427 8.21488e-3 407 8.21488e-3

Gaussian 3 194 1.12793e-8 252 1.12793e-8 244 1.12793e-8

Meyer 3 2801 87.9459 7269 87.9459 4066 87.9459

Gulf research 3 529 5.44511e-19 955 2.92451e-21 937 2.90829e-23

Box 3 478 8.70459e-21 923 1.91130e-20 498 1.60807e-20

Powell singular 4 1045 6.73509e-26 1280 3.43198e-25 2104 2.35132e-32

Wood 4 656 2.57400e-16 1177 2.50092e-17 1102 7.14988e-19

Kowalik and Osborne 4 653 3.07506e-4 566 3.07506e-4 638 3.07506e-4

Brown and Dennis 4 603 85822.2 620 85822.2 683 85822.2

Quadratic 4 440 2.15350e-17 427 2.82657e-17 301 0.00000

Penalty (1) 4 1848 2.24998e-5 1596 2.24998e-5 2837 2.24998e-5

Penalty (2) 4 4689 9.37629e-6 2274 9.37629e-6 3137 9.37629e-6

Osborne (1) 5 1488 5.46489e-5 1766 5.46489e-5 1798 5.46490e-5

Brown almost linear 5 648 1.08728e-18 769 4.03372e-18 1062 1.43221e-20

Biggs EXP6 6 4390 1.16131e-20 2877 1.12896e-20 3399 1.26952e-23

Extended Rosenbrock 6 3110 1.35844e-14 2345 9.06455e-18 1977 1.94036e-19

Brown almost linear 7 1539 1.51163e-17 1473 4.83079e-18 1446 9.24764e-20

Quadratic 8 1002 8.07477e-17 1124 1.96893e-16 1189 5.24081e-19

Extended Rosenbrock 8 5314 3.27909e-17 2996 1.50285e-17 4637 7.96193e-20

Variably dimensional 8 2563 1.24784e-15 2634 7.66228e-16 2988 5.28934e-18

Extended Powell 8 7200 6.43822e-24 7014 1.63762e-25 6586 3.06964e-29

Watson 9 5256 1.39976e-6 5394 1.39976e-6 6266 1.39976e-6

Extended Rosenbrock 10 7629 2.22125e-16 6208 1.77981e-17 8611 1.95807e-19

Penalty (1) 10 9200 7.08765e-5 11514 7.08765e-5 8479 7.08765e-5

Penalty (2) 10 32768 2.93661e-4 31206 2.93661e-4 28753 2.93661e-4

Trigonometric 10 2466 2.79506e-5 1521 1.49481e-16 2116 2.79506e-5

Osborne (2) 11 6416 0.0401377 3263 0.0401377 3723 0.0401377

Extended Powell 12 20076 1.11105e-20 12846 5.51619e-28 12146 2.08459e-20

Quadratic 16 2352 1.41547e-16 3639 4.70425e-16 3349 1.38958e-18

Quadratic 24 4766 1.21730e-15 6067 4.06413e-16 7065 8.37327e-19

21

