
Optimization of integrated circuits by means of simulated annealing 

Jernej Olenšek, Janez Puhan, Árpád Bűrmen, Sašo Tomažič, Tadej Tuma 

 

University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, Ljubljana, 

Slovenia 

 

Key words: parametric optimization, simulated annealing, design of integrated 

circuits. 

Abstract 

The purpose of this paper is to test the efficiency of the modified orthogonal 

simulated annealing algorithm. The method is compared with the COMPLEX method 

on a set of mathematical functions. The method is then used on three real-world 

cases of integrated circuits and compared with a modified COMPLEX method that 

uses intelligent initial points selection. 

 

Optimizacija integriranih vezij z algoritmom simuliranega ohlajanja 

Ključne besede: parametrična optimizacija, simulirano ohlajanje, načrtovanje 

integriranih vezij. 

Povzetek 

Namen prispevka je preizkusiti učinkovitost modificiranega ortogonalnega 

simuliranega ohlajanja. Primerjamo ga z metodo COMPLEX na skupini matematičnih 

funkcij. Metoda je nato uporabljena na treh realnih primerih integriranih vezij in 

primerjana z modificirano metodo COMPLEX, ki uporablja pametno izbiranje začetnih 

točk. 

 



1 Introduction 

Optimization problems arise in virtually every field of engineering, science, and 

business. The parametric optimization problems are usually presented in the 

following form: 
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where f  is the so-called cost function (CF) and x  is a vector of parameter values. L  

and U  are vectors of lower and upper parameter bounds, respectively. Unfortunately 

analytical solutions to (1) can only be obtained for some very simple and small 

problems. Most practical problems are complex and often  include simulations and 

measurements, which are very expensive and time consuming.  The complexity of 

the optimization problem depends on the dimensionality (i.e. the number of 

optimization parameters) and on the shape of the CF. The size of the solution space 

increases exponentially with the problem dimensionality, so locating good solutions 

becomes increasingly more difficult. But the real challenge arises from the CF itself. 

In most real-world applications the CF is nonlinear and has many local minima. Often 

the value of the CF is a result of numerical simulations or measurements that 

introduce noise to the CF. Noise makes the fast deterministic gradient based 

methods useless and derivative free direct methods become more attractive. Direct 

methods are usually divided in two major groups. Deterministic methods always 

produce the same final solution when they start with the same initial guess. One 

method from this group is the simplex method which is well known and popular due 

to its simplicity and speed. But the simplex method is a local downhill search method 

and its solution greatly depends on the initial guess. Stochastic methods, on the 



other hand, introduce randomness to the search process and are capable of 

escaping from the local minima in order to find better solutions. Simulated annealing 

is a stochastic method. In this paper we describe a recent version of simulated 

annealing referred to as Orthogonal Simulated Annealing (OSA) [1] and compare it 

with a modified simplex method also known as COnstrained siMPLEX (COMPLEX) 

[2]. The comparison is done on a set of mathematical test functions. OSA and 

modified COMPLEX methods are then used on three real-world integrated circuit (IC) 

design problems. The purpose of comparison is to establish the feasibility of circuit 

optimization with OSA. 

The paper is organized as follows. In section 2 a brief description of the basic 

simulated annealing algorithm is given and in section 3 the OSA algorithm is 

described in detail. Section 4 compares the algorithm with the COMPLEX method on 

a set of mathematical test functions. In section 5 OSA is compared with a modifed 

COMPLEX methods on three cases of IC design. Section 6 gives the conclusions. 

 

2 Simulated annealing algorithm 

Downhill methods can easally get trapped in local minima. To escape from a local 

minimum uphill moves must be allowed from time to time to give the algorithm a 

chance to move to unexplored parts of the solution space. Simulated annealing [3] 

was developed for this purpose. It always accepts downhill moves but occasionally 

uphill moves are also accepted. The basic features of the algorithm come from the 

analogy with the movement of atoms in metal. When metal is heated up to a very 

high temperature, atoms can move freely even to a state with higher energy. When 

the material is cooled down slowly, atoms are more likely to move to low energy 

states. If the annealing is slow enough, the resulting metal has an uniform structure 



with very few defects and minimal free energy. The simulated annealing method 

mimics this process by introducing an artifical parameter to the search process often 

referred to as the temperature (T ) which controlls the acceptance probability for the 

uphill moves. At the beginning of the search it is set to a high value and most 

transitions to higher CF values are accepted. As the search progresses, the 

temperature is slowly decreased so that the uphill moves become less frequent. If the 

annealing is done in a sufficiently slow manner, the final solutions reached by the 

algorithm are near the global minimum of the CF. The CF is an analogy of the free 

energy of the atoms in a metal. The basic steps of the simulated annealing algorithm 

are: 

1. initialize - set algorithm parameters, inital point 

2. generate new point - generation mechanism 

3. acceptance criterion – transition 

4. continue with 2  until end of temperature stage 

5. annealing - cooling schedule (decrease temperature) 

6. continue with 2 until stopping condition is met 

 

These steps must be chosen carefully in order to ensure the probabilistic 

convergence to the global optimum. The obtained algorithms, however, are not very 

efficient in practice because the required cooling schedules are too slow or the 

generation mechanisms are too inefficient to get any useful result in a reasonable 

amount of time. That is why most practical versions of the algorithm use modified 

generation mechanisms and cooling schedules. This way the convergence proofs 

(i.e. [5]) no longer apply but good solutions can still be obtained in a reasonable 

amount of time. 



 

3 Orthogonal simulated annealing algorithm (OSA) 

Recently a new version of the simulated annealing algorithm was developed [1], 

taking advantage of a carefully designed set of experiments at every iteration that 

helps to choose a good point for the next iteration. Since the results reported in [1] 

were encouraging, this method was chosen for implementation and testing. All steps 

of the algorithm are described in this section. 

 

3.1. Initialization 

In the initialization step basic algorithm parameters are set. For this purpose several 

points (in our case 100) are randomly chosen and evaluated. The best of these 

points is set as the starting point for the algorithm. The initial value of the temperature 

parameter T  is set to the standard deviation of CF values at these points. Our 

method differs slightly from the original one [1]. Instead of using the same parameter 

(temperature) for the acceptance criterion and the generation meachanism we use a 

separate parameter for generation of random moves. The allowed intervals [ ]UL,  for 

different optimization variables can vary considerably so the generation mechanism 

must use a separate parameter for each variable. For this reason we introduce 

another vector parameter referred to as the range ( R ). The initial values of the 

components of R  are set to allowed interval widths of optimization variables. Another 

parameter that needs to be set is the number of moves at each temperature 

stage tN . In theory it must be large enough for the algorithm to reach thermal 

equlibrium in every temperature stage. In our case tN  is set to 10. 

 

 



 

3.2. Generation mechanism 

The algorithm uses orthogonal experimental design (OED) to choose good 

candidates for the next iteration. A carefully designed set of experiments allows for 

an efficient factor analysis. The main idea is to evaluate a small number of points in 

order to estimate factor effects on the given CF. The selection of these points is done 

with the help of orthogonal arrays. In this context orthogonal means statistically 

independent so that the estimation of the effect of one factor does not affect the 

estimation of the effects of others. An example of such an experimental design for 

three factors and three levels per factor is given in table 1, which contains the 

generated orthogonal array and figure 1, which shows the distribution of the 

corresponding experimental points. 

-- Table 1 -- 

-- Fig 1 -- 

There is a total of 2733 ==fNQ  combinations of factor levels for this example, where 

Q  is the number of levels per factor and fN  is the number of factors. In our case 

only nine experimental points have to be evaluated and the use of the orthogonal 

array assures that these points are evenly spread around the search space. The 

algorithm for generation of orthogonal arrays can be found in [4]. 

The use of orthogonal arrays also has drawbacks. The method works very well when 

there are no interactions between different factors. Unfortunately this is usually not 

the case. Furthermore optimization problems often include many optimization 

variables so the number of required experiments for an efficient factor analysis is 

large. Therefore the vN  variables are randomly grouped into fN  factors. The two 

most extreme cases are when vf NN =  and 1=fN . In the former case there are 



many factors but because of the interaction effects between factors, the estimation of 

factor effects is less accurate. In the latter case there is only one factor and the 

estimated effect is accurate, but the optimization requires more iterations. A 

compromise is needed. The formula for determining the number of factors for a given 

problem is: 

⎣ ⎦( ) 2/13 )12(log3 −= +⋅ vN
fN          (2) 

At the beginning of every iteration the variables are randomly divided into fN groups 

and every group is considered as one factor. Then a random perturbation vector is 

generated according to a specified probability distribution (in our case the Cauchy 

distribution). For every optimization parameter ix  the probability distribution of 

perturbation idx  is: 

( ) v
ii

i
i Ni

dxR
R

dxp ,...2,1,)( 22 =
+

=
π

        (3) 

where iR  is the range parameter of the i -th variable in the current temperature 

stage. To generate a random variable from this distribution the inversion method is 

used: 
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where U  is an uniformly distributed random number from the interval [0,1]. After 

generating the perturbation vector dx , the three levels for every optimization variable 

are determined as: 
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where c
ix  is the current value of the i -th variable. If 1

ix  or 2
ix  violates box-

constraints [ ]ii UL , , its value is chosen randomly from this interval. Since variables are 



grouped into factors, setting one factor to some level means setting all the variables 

ix  from that factor to the corresponding level ( 0
ix , 1

ix or 2
ix ). This way the orthogonal 

array is converted into experimental points, which are then evaluated. The main 

effects of all factor levels are obtained by the following formula: 

∑ ⋅=
t

ttkj FyS ,           (6) 

where kjS ,  denotes the effect of the k -th level of the j -th factor and ty is the value of 

the CF from the t -th experiment. tF  has only two possible values. It is 1 if in the t -th 

experiment the j -th factor has k -th level. Otherwise tF  is 0. The new candidate 

solution can now be generated. For every factor ( j ) the level ( k ) with the minimum 

kjS ,  is chosen. The CF of the new candidate solution is then evaluated. The best of 

all the experimental points and the candidate solution is then submitted to the 

acceptance criterion as a potential solution for the next iteration. This process is 

repeated tN  times in every temperature stage. 

 

3.3. Acceptance criterion 

Most versions of the simulated annealing algorithm use the same transition 

acceptance criterion which is known as the Metropolis criterion. Downhill transitions 

are allways accepted. Uphill transitions are accepted with the probability: 
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where 'y  and y  are the CF values at the new and the current point, respectively, and 

T  is the value of the temperature parameter. At high temperatures almost all 

transitions are accepted but when the temperature is close to zero most of the uphill 

moves are rejected and the algorithm acts as a downhill method. 



 

3.4. Annealing 

The next step of the algorithm is the cooling schedule. Several schedules have been 

developed but the best known and also very popular is the original schedule of 

Kirkpatrick [3]. The temperature decreases exponentially: 

( ) ( ) [ ]1,0,1 ∈⋅−= ααkTkT          (8) 

where k  is the temperature stage index. Large values of α  mean slow convergence 

but more reliable search for the global optimum whereas smaller values mean fast 

convergence with the increased risk of getting trapped in a local minimum. The 

empirically chosen value for α  was 0.99. At the end of every temperature stage the 

number of moves  tN  in a temperature stage is also decreased by α : 

( ) ( ) α⋅−= 1kNkN tt           (9) 

The probaility distribution for random moves must also be adapted. The range 

parameter R  is reduced at the end of every temperature stage: 

( ) ( ) vtt NikRkR ,...2,1,1 =⋅−= α         (10) 

 

3.5. Stopping criterion 

Several stopping criteria can be used. In our case the algorithm stops when the 

temperature reaches user specified minimal value minT  (in our case 610− ) or when the 

number of CF evaluations exceeds the maximum allowed number of evaluations. 

 

4 Optimization of mathematical test functions 

Orthogonal simulated annealing was compared with the COMPLEX method [2] on a 

set of mathematical functions. The set includes unimodal functions, functions with a 



small number of local minima (considered as moderatelly difficult problems) and 

difficult problems with many local minima, noise, nonlinearity and strong interactions 

between variables. All of the tested functions can be found in [4]. The optimization 

was repeated 50 times for every function with randomly chosen initial points. Both 

methods had the same limited number of CF evaluations (50000 and 70000 for 

problems with 30=vN  and 100=vN , respectively). The optimization results are given 

in table 2. 

-- Table 2 -- 

The results show that the OSA method is promising when compared to COMPLEX. 

The COMPLEX method exhibits very fast convergence but gets stuck in a local 

minimum in almost every tested case. It outperforms the OSA method in some cases 

of unimodal functions and functions with strong noise. The latter is not unexpected 

since the method maintains a population of points between iterations. Simulated 

annealing, on the other hand, starts every iteration from a single point. On multimodal 

functions OSA outperformed the COMPLEX method in terms of global search 

capabilities. Due to the modified generation mechanism and cooling schedule the 

algorithm was not able to locate the global minimum in all optimization runs, but the 

solutions that were found were still fairly good when compared to the global 

minimum. 

 

5 Optimization of integrated circuits 

Since the OSA performance on mathematical functions was very promising, the next 

step was to test it on real-world electronic circuit design problems and compare its 

performance with the COMPLEX method. For this purpose SPICE OPUS circuit 

simulator was used [6]. In SPICE OPUS a modified COMPLEX method is already 



integrated as one of the available optimization methods. Since the original method 

has very fast convergence, restart with intelligent initial points selection is conducted 

every time the basic method reaches its stopping criterion [7]. This process is 

repeated untill the given limit of CF evaluations is reached. The final result is the best 

solution of all the runs. The OSA method had to be implemented in C langunage and 

added as one of the available optimization methods in SPICE OPUS. 

Three cases of electronic circuit design were considered. The first circuit was a 

simple delay element, the second an operational amplifier, and the third a rather 

complex amplifier circuit. Circuit topologies for all three cases are given in figures 2, 

3, and 4.  The key properties of all three optimization problems are given in table 3.  

-- Fig2 -- 

-- Fig3 -- 

-- Fig4 -- 

-- Table 3 -- 

Optimization parameters were resistances, capacitances and transistor channel 

lengths, widths, and multiplier factors. For every circuit several design goals were set. 

A single CF is constructed as a combination of all the design goals [8]. Optimization 

is conducted across several corner points to account for different envirenmental 

conditions (supply voltage, temperature, process parameter variations, ...). Since 

every CF evaluation requires a separate circuit simulation for each corner point, a 

large number of simulations is expected resulting in very long run times. Therefore 

every circuit was optimized only once. The results of the optimization are given in 

table 4.  

-- Table 4 -- 



Since the modified COMPLEX method uses restarts and can explore several local 

solutions within the given number of CF evaluations, the number of the run in which a 

solution was found is given in brackets. The number of CF evaluations after which 

the COMPLEX method was manually stopped, is also given. The OSA method 

stopped automatically when the temperature reached its final value. Both tested 

methods were compared in terms of the solution quality and the number of CF 

evaluations (FE). 

The first case is the most simple of the three cases considered. It only has a few 

design goals and does not include corner points. It also has the least optimization 

variables. All this makes the solution space smaller and the CF less complex. For this 

case the modified COMPLEX method performed considerably better than OSA. It did 

however require more CF evaluations and several restarts to reach a good solution. 

In the second case multiple corner points and more design goals were considered. 

OSA outperformed the modified COMPLEX method in terms of solution quality and 

number of required CF evaluations. The third case has the largest number of 

optimization variables, design goals, and corner points. In this case OSA was also 

more successfull than the modified COMPLEX method. These results show that for 

simpler cases the modified COMPLEX method clearly is a better choice. But when it 

comes to complex circuits, many design goals, and, above all, a large number of 

corner points, it does not perform as good as OSA. Not even restarts helped the 

COMPLEX method to find a better solutions than the one OSA found in a single run. 

 

6 Conclusions 

A recently developed optimization method called Orthogonal Simulated Annealing 

(OSA) is described and compared against a version of the simplex algorithm 



(COMPLEX method). Both methods are first tested on a set of mathematical test 

functions. The results showed that OSA performs better when the CF has many local 

minima. On the other hand, the COMPLEX method is a good choice when finding a 

local minimum quickly is more important than finding a global minimum. OSA and 

modified COMPLEX method were then tested on three IC design cases. The results 

showed that on the simpler case the modified COMPLEX method using restarts 

outperformed the OSA method. As the problem complexity increased, the ability of 

the OSA to explore the search space more thoroughly resulted in better performance 

(compared to the modified COMPLEX method). But in order to obtain a good solution 

in a reasonable amount of time, probabilistic global convergence of the algorithm had 

to be sacrificed (modified generation mechanism and cooling schedule). Therefore 

there is no guarantee as to when and if the global minimum will actually be found. 

Nevertheless OSA is well suited to IC optimization and design, particularly for 

problems with many variables and corner points. 

 

7 Acknowledgment 

The research has been supported by the Ministry of Higher Education, Science and 

Technology of Republic of the Slovenia within programme P2-0246 - Algorithms and 

optimization methods in telecommunications. 

 

8 References 

[1] Li-Sun Shu, Shinn-Ying Ho, A Novel Orthogonal Simulated Annealing 

Algorithm for Optimization of Electromagnetic Problems,  IEEE transactions on 

magnetics, Vol. 40,  No. 4,  pp. 1790-1795, July 2004. 



[2] M.J. Box, A new method of constrained optimization and a comparison with 

other methods, Computer Journal, Vol. 8, pp. 42-52, 1965.  

[3] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, 

Science, Vol. 220, pp. 1277-1292,1983.  

[4] Yiu-Wing Leung, An orthogonal Genetic Algorithm with Quantization for Global 

Numerical Optimizaion, IEEE transactions on evolutionary computation, Vol. 5, No. 1, 

pp. 41-53, 2001.  

[5] R.L. Yang, Convergence of simulated annealing algorithm for continuous 

global optimization, Journal of optimization theory and applications, Vol. 104, No. 3, 

pp. 691-716, 2000. 

[6] SPICE OPUS circuit simulator homepage: 

URL: http://www.fe.uni-lj.si/spice/ ,  

Faculty of Electrical Engineering, Electronic Design Automation Laboratory: 

URL: http://www.fe.uni-lj.si/edalab/\hspace{1mm}. 

[7] Puhan J, Bűrmen A, Tuma T. Analogue integrated circuit sizing with several 

optimization runs using heuristics for setting initial points, Canadian journal of 

electrical and computer engineering, Vol. 28  (3-4): pp. 105-111 JUL-OCT 2003.  

[8] Bűrmen A, Strle D, Bratkovič F, Puhan J, Fajfar I, Tuma T. Automated robust 

design and optimization of integrated circuits by means of penalty functions, AEU- 

International journal of electronics and communications, Vol. 57  (1), pp.  47-56, 

2003. 

 
 
 
 



univ. dipl. ing. el. Jernej Olenšek 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: jernej.olensek@fe.uni-lj.si 
Tel: (01) 4768 724 
 
doc. dr. Janez Puhan 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: janez.puhan@fe.uni-lj.si 
Tel: (01) 4768 322 
 
doc. dr. Árpád Bűrmen 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: arpadb@fides.fe.uni-lj.si 
Tel: (01) 4768 322 
 
prof. dr. Sašo Tomažič 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: saso.tomazic@fe.uni-lj.si 
Tel: (01) 4768 432 
 
izr. prof. dr. Tadej Tuma 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: tadej.tuma@fe.uni-lj.si 
Tel: (01) 4768 329 
 



 
experiment 

number 
factor 1 

level 
factor 2 

level 
factor 3 

level 
1 1 1 1 
2 1 2 2 
3 1 3 3 
4 2 1 2 
5 2 2 3 
6 2 3 1 
7 3 1 3 
8 3 2 1 
9 3 3 2 

Table 1: Orthogonal array for 3 factors  
and 3 levels per factor. 

 
 
 

 

 
 

Fig. 1: Distribution of experimental points when the  
orthogonal array from Table 1 is used. 

 
 
 



 
 vN  COMPLEX OSA global 

minimum 
1f  30 -9596.2 

-3012.3 
-12569.5 
-12569.5 

-12569.5 

2f  30 6.9709 
224.67 

3.5527·10-14 
1.9899 

0 

3f  30 1.6714 ·10-2 

3.93447 
1.5234·10-7 
2.7337·10-7 

0 

4f  30 2.2362 ·10-5 

3.04840 
1.7375·10-13 

1.6971·10-1 
0 

5f  30 2.1584·10-5 
1.59433 

1.6672·10-16 
2.0732·10-1 

0 

6f  30 1.9551·10-5 
6.99148 

3.1601·10-15 
1.0987·10-2 

0 

7f  100 -61.124 
-29.261 

-98.861 
-97.860 

-99.2784 

8f  100 -70.408 
-63.311 

-78.332 
-78.331 

-78.33236 

10f  100 113.13 
196.95 

283.59 
795.04 

0 

11f  30 2.5981·10-8 
5.3587·10-5 

5.4955·10-14 
8.2124·10-13 

0 

12f  30 4.1618·10-3 
2.0489·10-2 

2.4360·10-2 

1.5660·10-1 
0 

13f  30 1.9705·10-1 
3.6034 

1.8169·10-7 
8.2303·10-7 

0 

14f  30 8.9943·10-2 

39.777 
102.83 
1928.0 

0 

15f  30 1.8026 
9.4910 

1.2809·10-5 

8.4080·10-1 
0 

Table 2. Table shows the best and the worst solution found in  
50 optimization runs. The functions used are defined in [4]. 

 
 



 
 

Fig. 2: Topology of the first circuit. 
 
 

 
 

Fig 3: Topology of the second circuit. 
 
 
 
 
 
 
 
 



 
Fig. 4: Topology of the third circuit. 

 
 
 

case  vN  design goals corner points 
1 12 7 1 
2 15 14 14 
3 17 32 17 

Table 3: Summary of the optimization cases: number of  optimization  
parameters, number of design goals, and number of corner points. 

 



 
 

case 
 mdified 

COMPLEX 
 

OSA 
 
 
1 

FE until cost < 100·103 
FE until cost < 20·103 

best cost 
FE until best cost 

final FE 

253 (1) 
660 (1) 
6.39·103 

21409 (28) 
> 100 000 

1011 
12758 

11.3·103 
14703 
16122 

 
 
2 

FE until cost < 50 
FE until cost < 10 

best cost 
FE until best cost 

final FE 

124 (1) 
2483 (2) 

8.07 
96912 (69) 
> 100 000 

58 
33595 
7.37 

47605 
47768 

 
 
3 

FE until cost < 10 
FE until cost < 1 

best cost 
FE until best cost 

final FE 

3672 (3) 
26688 (21) 

0.282 
41131 (32) 
> 45 000 

32014 
34248 
0.088 
43877 
44164 

Table 4: Optimization results: number of function evaluations (FE) to find a  solution of the 
given quality, and final solutions. For modified COMPLEX method the number of the run in 

which a solution was found, is also given in brackets. 


