
1 

Parallel sizing of robust analog ICs 

Árpád Bűrmen, Janez Puhan, Tadej Tuma 

University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, Ljubljana, Slovenia 

Key words: circuit sizing, analog IC, parametric optimization, parallel optimization, CAD. 

Abstract 

Automated robust IC design is a time consuming process. The resulting circuit must fulfill 

all the performance constraints in several different operating conditions and under the 

influence of different manufacturing process variations (corners). To achieve this, a large 

number of circuit analyses must be performed for the circuit, considered by the sizing 

algorithm. By distributing these simulations among multiple computers speedup can be 

obtained. A major problem is the synchronous nature of the optimization algorithm that in 

combination with variable duration of a circuit analysis causes the computers in the parallel 

system to be idle. This results in a reduction of speedup. The paper presents the corner 

parallel approach to the problem of parallel robust analog IC sizing. The method is tested 

with a sample opamp sizing problem. The speedups are measured, and an approach is 

proposed for reducing the idle time of the computers. 

 

Vzporedno dimenzioniranje robustnih analognih integriranih vezij 

Ključne besede: dimenzioniranje vezij, analogna integrirana vezja, parameterska 

optimizacija, vzporedna optimizacija, računalniško podprto načrtovanje. 

Povzetek 

Avtomatsko robustno načrtovanje analognih integriranih vezij je časovno zahteven 

postopek. Cilj je najti vezje, ki zadosti vsem načrtovalskim zahtevam za dano območje 

pogojev delovanja in variacij parametrov postopka izdelave (vogalnih točk). V ta namen je 

potrebno narediti veliko število analiz za vsako vezje, ki ga računalnik med postopkom 

iskanja preizkusi. S porazdelitvijo teh analiz med več računalnikov je mogoče postopek 



2 

pospešiti. Vendar pa sinhrona narava optimizacijskega postopka v kombinaciji s 

spremenjlivo dolžino analize povzroči, da so računalniki v vzporednem sistemu del časa 

brez dela. Rezultat je zmanjšana pospešitev postopka. Članek opisuje pristop k 

paralelizaciji robustnega načrtovanja vezij preko porazdelitve vogalnih točk med več 

računalnikov. Podani so rezultati v odvisnosti od števila vzporedno računajočih 

računalnikov. Predlagan je tudi postopek za skrajšanje časa, med katerim so računalniki 

brez dela. 

1 Introduction 

As the competition in the IC design industry is becoming sharper, methods for automating 

parts of the IC design process are gaining on importance [1]. Up to recently circuit 

simulation was the tool that gave “the edge” to an IC designer. It may have taken a 

relatively long time for a circuit simulator to evaluate circuit’s performance under the 

influence of various operating conditions and manufacturing process variations, but that 

was compensated with designer’s knowledge and experience in choosing circuit 

parameter values. Experienced designers are capable of sizing a circuit in a reasonable 

amount of time when compared to the time spent for simulation. Various approaches for 

speeding up the simulation were developed and tested during that time [2]. 

 

The available computing power steadily increased and the simulation time began to 

decrease until it reached the point where simulation is no more a bottleneck in the design 

process. This trend is becoming more and more obvious as the techniques (e.g.[3], [4]) 

and tools (e.g. [5], [6]) for automating the circuit sizing process begin to appear. These 

tools put an optimization algorithm ([7], [8]) in the role of a human designer. The basic idea 

is to emulate a part of the designer’s knowledge and experience by transforming the 

search for a “better circuit” into the search for a lower cost function (CF) value. An 

optimization algorithm searches for such circuit parameter (e.g. MOS widths and lengths) 



3 

values where the CF reaches its lowest value. When using such tools the designer’s job is 

to define 

- circuit structure (e.g. the unsized schematic of an opamp),  

- element matching [9] (some circuit element parameters are not independent, e.g. width 

and length of the two MOS transistors in a differential pair),  

- which analyses to perform and what circuit characteristics to extract from them (we 

consider circuit area as yet another circuit characteristic, although it is not the result of 

some analysis),   

- set of corners for which the circuit is to be analyzed (a corner is a particular 

combination of operating conditions and manufacturing process variations), and 

- performance constraints on circuit characteristics and their relative importance with 

respect to each other. 

 

The optimizer then handles the rest of the work. Of course if the performance constraints 

are set to some values that cannot be achieved with the given circuit structure, the 

resulting circuit doesn’t fulfill all performance constraints. 

 

A typical optimization run requires the evaluation of several hundred up to several 

thousand different circuits with the same structure and different parameter values. As 

every circuit has to be evaluated in all of the specified corners, the optimization may take a 

long time (at the time being, using a state-of-the-art computer it takes typically from a few 

hours up to several days). Therefore every reduction of this time represents a significant 

benefit to the designer. There exist different approaches for accelerating the process of 

optimization by means of parallelization. 

 



4 

This paper presents the so-called corner-parallel approach. The remainder of the paper is 

subdivided as follows. First the method of constructing the cost function is presented. The 

various levels at which parallelism can be introduced are briefly discussed. The use of 

PVM [10] for implementing the corner-parallel approach is described and runtimes for a 

sample circuit sizing problem are given. Finally the synchronization penalty is discussed 

and an approach for its alleviation is proposed. 

2 Defining the cost function 

2.1 Circuit design and corner points 

In order to obtain a robust circuit it must exhibit adequate performance in all corners. A 

corner is a combination of some process variation (like the worst power and worst speed 

MOS corner) and M  operating conditions (like temperature, supply voltage, etc.). 

Suppose that we have n0 possible process variations. Let ni denote the number of different 

values for the i-th operating condition that are of interest to the designer. Then the total 

number of corner points is 

∏
=

=
M

i
inK

0

           (1) 

Of course (1) quickly grows beyond any reasonable value. Therefore the designers usually 

examine the circuit for a subset of corners (CS). MS denotes the number of corners in CS. 

 

The performance of the circuit can be described by a vector [ ] N
N Ryyy ∈= ,...,1  of N real 

valued performance measures (like gain, bandwidth, rise time, etc.). When sizing a circuit 

the optimizer has to find the values of n  circuit parameters represented by a vector nRx∈ . 

The circuit itself can be viewed as a transformation (2) that for some combination of n  

circuit parameters denoted by vector x  and some corner point denoted by q  produces a 

vector of circuit characteristics y . 



5 

( ) yqxD a,:    Nn RyCqRx ∈∈∈ ,,       (2) 

[ ] [ ]),(),...,,(),,(),(),...,,(),,(),( 2121 qxDqxDqxDqxyqxyqxyqxy NN ==  

The designer’s goal is to either minimize or maximize the performance measure. Typically 

one tries to minimize measures like rise time and fall time and maximize measures like 

bandwidth and gain. Let ih  be 1 if iy  is to be maximized and 0 if it is to be minimized. Now 

let ib  denote the worst still acceptable iy  value. A circuit has acceptable performance with 

respect to performance measure iy  under minimization if ii by ≤ . On the other hand if iy  

is being maximized, acceptable circuit performance with respect to iy  requires ii by ≥ . 

 

Finally the circuit is considered to have acceptable performance if its performance is 

acceptable with respect to all performance measures for all corners SCq∈ . 

 

Let worsty  denote the vector of worst performance measure values across all corners. 

 
⎪⎩

⎪
⎨
⎧

=

=
=

∈

∈

0),(max

1),(min
)(

iiCq

iiCqworst
i hqxy

hqxy
xy

S

S         (3) 

2.2 Constructing the cost function 

Suppose ( )xg  is a continuous monotonically increasing function defined for 0≥x . Then 

( ) ( ) ( )⎩
⎨
⎧

≥−
<

=
00
00

xgxg
x

xf          (4) 

We know that the optimizer searches for the lowest CF value. Therefore better performing 

circuits should be assigned a lower CF value. For that purpose a partial CF can be defined 

using (3) and (4): 

( ) ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=

N

i i

worst
ii

i
i

i
worst
i

iP A
yb

fh
A

by
fhyF

1

)1(      (5)  



6 

Finally the CF that is used by the optimizer is the sum of partial CF values across all 

corners. 

∑
∈

=
SCq

P qxyFxF )),(()(          (6) 

By minimizing this function the optimizer actually searches for the circuit (vector of 

parameters x ) with minimal constraint violation. If a circuit with CF value 0 is found, it 

means that all the constraints are satisfied and the optimization can be stopped. 

 

The optimizer must consider the fact that the simulator used for evaluating the circuit is not 

always capable of solving the circuit equations. As a matter of fact there exists a plethora 

of pathologic circuits for which the simulator fails to find a solution. In such a case we 

assign either Lyi =  (if 0=ih ) or Lyi −=  (if 1=ih ) to all iy  that can’t be evaluated due to 

simulator failure. L is a large positive value. Such strategy produces a very high CF value 

for pathological circuits and thus forces the optimizer to avoid those parts of the parameter 

space, where such circuits are found.  

3 Parallel circuit sizing 

-- Fig. 1 -- 

The innermost level (level 1 in fig. 1) at which parallelism can be introduced is the 

simulator level. If one wants to exploit parallelism at this level a special simulator is 

required. In the past a lot of effort was invested in developing such simulators, but none of 

them grew to be as general and widespread as today’s circuit simulators (e.g. [12]).   

 

The outermost level is the optimization algorithm level. The amount of speedup that can be 

gained from parallelism at this level depends on the type of optimization algorithm. Genetic 

algorithms [13] (GA) and simulated annealing [14] (SA) are well suited for such parallel 

execution. Unfortunately they require many CF evaluations before they reach a solution. 



7 

So the large speedup that can be gained from parallel execution is lost due to the fact that 

these algorithms are extremely time consuming per se. On the other hand algorithms like 

the simplex algorithm need fewer CF evaluations (between one and two orders of 

magnitude less than SA and GA), but the amount of speedup that can be obtained by 

introducing parallelism seems to be limited ([15], [16]). 

 

What remains are the two intermediate levels. As a matter of fact there really is no distinct 

border between them. The two levels are depicted separately in fig. 1 to emphasize the 

way the CF is evaluated, i.e. for every corner several different circuit analyses are 

performed and every one of them is an independent entity that can be simulated in an 

independent simulator run. One or more performance measures are then extracted from 

results of every analysis and are used to build a part of the CF according to (5). 

Introducing parallelism at this level means that the CF evaluation is distributed among 

several computers, where every computer evaluates the part of the cost function that 

belongs to a subset of corners and analyses. Effectively this means that one computer 

runs one or more analyses and extracts performance measures from the obtained analysis 

results. In the remainder of this paper we focus on corner-level parallelism (level 3). 

 

In the parallel computing community two major tools are available for implementing parallel 

algorithms: PVM [10] and MPI [11]. MPI is the official standard. Recently the PVM library 

gained a wide audience due to its flexibility and the portability of its open source 

implementation. Today it is recognized as the de-facto standard for parallel processing. 

Currently the most popular hardware platform for parallel processing is the loosely coupled 

(ethernet) cluster of ordinary PCs, usually running LINUX.  

 



8 

PVM consists of two parts. The PVM deamon runs as a server on every computer of the 

cluster. It manages processes and the communication between them. The second part is 

the PVM library that comprises a large set of C functions for process management, and 

interprocess communication. Typically a PVM application starts as an ordinary process on 

the master computer. Upon entering PVM the process becomes the master process. Next 

it spawns worker processes on remote computers in the cluster upon which the parallel 

algorithm can start executing. 

 

The work is divided among the workers in such a manner that every worker handles one 

corner (one SCq∈ ), i.e. one term from the sum in (6). One doesn’t have to have MS 

computers in the cluster for that. If the number of computers (P) is smaller than MS then at 

first only P corners are divided among the workers. The worker that first finishes evaluating 

its corner obtains a new corner from the master computer. This continues until the master 

computer collects the partial CF values for all corners. After that the optimization algorithm 

on the master computer selects a new point ( x ) in the parameter space and the parallel 

CF evaluation is repeated for that point. 

 

The above-proposed parallel approach is synchronous. The evaluation of the CF from 

collected partial CF values at the master computer represents a synchronization point. The 

master cannot continue from this point until all partial CF values are collected from the 

workers. The duration of a partial CF evaluation is not constant since the simulator 

(SPICE) solves the circuit by means of various iterative techniques. As a consequence 

some workers finish sooner than the others. If the master doesn’t have a partial CF 

evaluation for them that will keep them busy, those workers remain idle until the master 

starts evaluating the next trial circuit. 



9 

4 Example 

To illustrate the proposed approach to parallel circuit sizing, a sample opamp circuit (fig. 2) 

was used. 9 corners were taken into account representing all possible combinations of 3 

Vdd values (3.0V, 3.3V, and 3.6V), 3 operating temperatures (–10oC, 27oC, and 80oC), 

and 3 MOS corners (TYP, BCS, WCS). W/L/M values in fig. 2 represent a circuit sized by 

an experienced designer. 

-- Fig. 2 -- 

The test circuit in fig.3 was used to evaluate the performance of the circuit in fig. 2 during 

the process of sizing. Several analyses were performed and performance measures were 

extracted from the results for every corner. Table 4 lists the performance measures, goals, 

and corresponding penalty coefficients from equation (5).  

-- Fig. 3 -- 

Although there are 20 MOS transistors in the circuit with 3 adjustable parameters per 

transistor, the number of optimization parameters is only 18. This number is reduced by 

grouping transistors like current mirrors and differential pairs in groups [9]. Table 1 lists the 

optimization parameters, the MOS transistors groups to which these parameters belong 

and their explicit constraints. 

-- Table 1 -- 

The parallel approach was tried out with different numbers of workers. The workers and 

the master were AMD ATHLON 2100XP computers running LINUX with PVM. In the first 

set of tests the optimization was stopped after 160 CF evaluations and the runtime was 

measured. Table 2 lists the runtimes, the corresponding speedups, and the overall CPU 

usage. Speedup was obtained by dividing the time spent in a single worker run with the 

time spent in a N-worker run. The CPU usage was obtained by dividing the speedup with 

the number of workers. From the obtained results it is clear that using 4-5 workers is a 

reasonable choice. This way speedup values around 2.7 can be obtained. 



10 

 

A large part of the performance degradation (overall CPU usage below 1.0) can be 

attributed to the variations of the partial CF evaluation time. If the master has no more 

partial CF evaluations for the current point in the design space, the workers that finish 

sooner remain idle until the master collects all partial CF values and moves on to the next 

point in the design space. It is often the case that the designer wants to try several 

different tradeoffs. Such tradeoffs can be examined by executing multiple optimization 

runs. If these runs are executed concurrently on the given set of workers one can expect a 

decrease of worker idle time. With more than one optimization run taking advantage of a 

worker, the probability that all of the optimization runs will leave the worker idle at some 

point in time decreases with the number of concurrent runs. Table 2 illustrates this for the 

case of 2 and 3 concurrent optimization runs. 

-- Table 2 -- 

For multiple concurrent optimization runs the equivalent time is obtained by dividing the 

total run time with the number of concurrent runs. This figure can be compared directly to 

the duration of a single run on a single worker (t1). The quotient of t1 and equivalent time 

represents the effective speedup. Finally the overall CPU usage is obtained by dividing the 

effective speedup with the number of workers. Effective speedup for 5 workers improved 

to 3.6 (2 concurrent optimization runs) and 4.2 (3 concurrent optimization runs). 

 

With these indications the second set of tests was conducted where several full 

optimization runs were executed. This time the optimization was stopped when the final 

solution was found (after 1965 CF evaluations). One run with a single worker and several 

runs with 5 workers were conducted. Table 3 lists the runtime, equivalent runtime per 

optimization run, effective speedup, and overall CPU usage. The speedup and overall 



11 

CPU usage are similar to the ones obtained from truncated runs (stopped after 160 CF 

evaluations).  

-- Table 3 -- 

The final results are presented in table 4. It is worth noting that the computer started from 

an initial point that wasn’t even a feasible opamp. Using 5 workers the computer sized the 

circuit in 1391s (20 minutes).The resulting circuit had performance comparable to or better 

than the performance of the human-designed circuit.  

-- Table 4 -- 

5 Conclusion 

The corner-parallel approach to robust circuit sizing has been presented. The 

mathematical formulation of the cost function used in the process of optimization 

represents the basis for dividing the work among the workers. Every worker evaluates a 

piece of the cost function that belongs to a particular corner of the circuit. The optimization 

algorithm needs the cost function value for choosing the next trial point in the design 

space. Therefore all partial cost function values must be collected first. Duration of the 

partial cost function evaluation varies significantly since circuit simulation is an iterative 

procedure. Some workers finish sooner than the others. If the master has no more partial 

cost function terms for handing over to the workers, these workers remain idle until all 

partial cost function values are collected by the master. At that point the optimization 

algorithm running on the master chooses a new point in the design space and provides the 

workers with new partial CF terms for evaluation.  

 

The consequence of worker idle time is the reduced speedup. For a circuit with MS corners 

optimized using MS workers the speedup should be near MS. Unfortunately the large 

variations in partial cost function evaluation time greatly reduce this number. The designer 

often wants to explore various design tradeoffs resulting from different parallel optimization 



12 

runs. These optimization runs can be executed concurrently. The experiments show that 

running 2 or 3 concurrent parallel optimization runs greatly improves CPU usage. This is 

due to the fact that with the increasing number of optimization processes running on a 

single worker the probability that all of them will be idle at the same time decreases.  

  

Taking into account Moore’s law (CPU power doubles every 18 months) one can expect 

that in the following 5 years sizing circuits (like the one in fig. 2) will become a matter of 

minutes, making automated circuit sizing a standard tool for every IC designer. 

Considering the fact that sizing such a circuit manually can be a matter of days even for 

experienced designers, manual circuit sizing will become economically unfeasible for 

many standard circuits (like opamps, linear regulators, etc.). This of course doesn’t mean 

that virtually anyone will be able to do IC design. Setting up an optimization run requires 

specific designer knowledge in the process of choosing the circuit structure, performance 

constraints, and element matching. Sensible explicit constraint values on optimization 

parameters reduce mismatch, but on the other hand increase the minimum achievable 

circuit area. Choosing these tradeoffs still requires extensive design experience. 

 

6 References 
[1] Gielen, G. G. E., Rutenbar, R. A., Computer-Aided Design of Analog and Mixed-Signal 

Integrated Circuits. Proceedings of the IEEE, vol. 88, no. 12, pp. 1825-1854, 2000. 

[2] Saleh, R.A., Gallivan, K.A., Chang, M.-C., Hajj, I.N., Smart, D., Trick, T.N., Parallel 

Circuit Simulation on Supercomputers, Proceedings of the IEEE, vol. 77, no. 12, pp 

1915-1931, 1989. 

[3] Phelps, R., Krasnicki, M., Rutenbar, R. A., Carley, L. R., Hellums, J. R., Anaconda: 

Simulation-Based Synthesis of Analog Circuits via Stochastic Pattern Search, IEEE  

Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 19, 

no. 6, pp. 703-717, 2000. 



13 

[4] Bűrmen, Á., Strle, D., Bratkovič, F., Puhan, J., Fajfar, I., Tuma, T.,  Penalty Function 

Approach to Robust Analog IC design, Informacije MIDEM-Journal of 

Microelectronics, Electronic Components, and Materials, vol. 32, no. 3, pp. 149-156, 

2002. 

[5] http://www.neolinear.com, January 2004. 

[6] http://www.synopsys.com/products/mixedsignal/hspice/creative_genius_ds.html, 

January 2004. 

[7] J. Puhan, T. Tuma, Optimization of analog circuits with SPICE 3f4. Proceedings of the 

ECCTD’97, vol. 1, pp. 177 - 180, 1997. 

[8] J. Puhan, T.Tuma, I. Fajfar, Optimisation Methods in SPICE, a Comparison. 

Proceedings of the ECCTD’99, vol. 1, pp. 1279-1282, 1999. 

[9] Gräb, H., Zizala, S., Eckmüller, J., Antreich, K., The Sizing Rules Method for Analog 

Integrated Circuit Design. IEEE/ACM International Conference on Computer-Aided 

Design, pp. 343-349, 2001. 

[10] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., Sunderam, V., PVM: 

Parallel Virtual Machine, MIT Press, 1994. 

[11] Gropp, W., Lusk, E., Skjellum, A., Using MPI – 2nd Edition, MIT Press, 1999. 

[12] T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE3 

Version 3f4 User’s Manual, Berkeley, University of California, 1989. 

[13] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, 

Adisson-Wesley, Reading, 1989. 

[14] Laarhoven, P. J. M. van, Theoretical and Computational Aspects of Simulated 

Annealing, Centrum voor wiskunde en informatica, Amsterdam, 1988.  

[15] J. E. Dennis, Jr., V. Torczon, Parallel Implementations of the Nelder-Mead Simplex 

Algorithm for Unconstrained Optimization. Proceedings of the SPIE, Vol. 880, pp. 187-

191, 1988. 



14 

[16] L. Coetzee, E. C. Botha, The Parallel Downhill Simplex Algorithm for Unconstrained 

Optimisation. Concurrency: Practice and Experience, vol. 10, no. 2, pp. 121-137, 

1998. 

 
as. dr. Árpád Bűrmen 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: arpadb@fides.fe.uni-lj.si 
Telefon: (01) 4768 322 
 
doc. dr. Janez Puhan 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: janez.puhan@fe.uni-lj.si 
Telefon: (01) 4768 322 
 
izr. prof. dr. Tadej Tuma 
Univerza v Ljubljani 
Fakulteta za elektrotehniko 
Tržaška 25, SI-1000 Ljubljana 
E-mail: tadej.tuma@fe.uni-lj.si 
Telefon: (01) 4768 329 
 



15 

 
OPTIMIZATION ALGORITHM (level 4)
(design point 1, design point 2, ...) 

CORNERS (level 3)
(corner 1, corner 2, ...) 

ANALYSES IN A CORNER (level 2)
(DC1, DC2, AC1, TRAN1, ...) 

SINGLE ANALYSIS (level 1) 
(DC, AC, TRAN, ...)

 
Fig 1: possible levels of parallelism. 

 
 

M08
M=24
28/2.5

M13
M=24
28/2.5

oumoutp

inm inp
M09
M=24
11/3.5

M14
M=24
11/3.5

M10
M=19
14/4

M15
M=19

14/4

M07
M=12
32/1

M12
M=12

32/1

M17
M=15
7/1.5

M19
M=15
7/1.5

cmref cmfb

vdda

vssa

M18
M=2
15/4.5

M20
M=2

15/4.5

M16
M=4
32/2

M11
M=12
32/2

M06
M=12
32/2

M03
M=2
32/2

M01
M=2
3/3.5

M02
M=2
32/1

I01
30u

I02
30u

R01
25k

M04
M=2
10/7

M05
M=2
14/4

 
 

Fig. 2: Sample opamp with M and W/L values. The scale is 0.3µm  
(all W/L values must be multiplied by 0.3µm to obtain physical dimensions). 

 
 

Routm
1G

Routp
1G

Coutm
0.15p

Coutp
0.15p

outp

outm

Cgndm
2.3p

Cgndp
2.3p

Cfbp
0.5p

Cfbm
0.5p

Cinm
0.5p

Cinp
0.5p

Routp
1m/1G

Routm
1m/1G

Vdd

Vdd/2Vin

Einm
1.0 VinVcm

1.2V

inp

cmfb

inm

vd
da

vs
sa

outm

outp

cmref

 
 

Fig 3: The test circuit. If two values are specified for some element, the first one is valid for 
all analyses but the transient. For the transient analysis the second value is used. 



16 

 
W=2..50 L=1..10 W=10..50 L=1..10 L =1..10 W=10..50 L=2..10 W=10..50 L=2..10 
M1 M1 M2,M3,M6, 

M7,M11, 
M12,M16 

M2,M7, 
M12 

M6,M6, 
M11,M16 

M4 M4 M5,M10, 
M15 

M5,M10, 
M15 

 
W=10..50 L=1..10 W=10..50 L=1..10 M=6..24 W=2..10 L=1..10 W=5..50 L=2..10 
M8,M13 M8,M13 M9,M14 M9.M14 M10,M15 M17,M19 M17,M19 M18,M20 M18,M20 

 
Table 1: Optimization parameters and matching. The scale is 0.3µm.  

During optimization widths and length are rounded to the nearest multiple of 0.5.  
M factor is rounded to the nearest integer. 

 
 

  Number of workers (N) 
  1 2 3 4 5 6 
1 run Time [s] 617.0 362.1 275.6 243.2 228.4 223.8
 Effective speedup 1.00 1.70 2.24 2.54 2.70 2.76
 Overall CPU usage 1.00 0.85 0.75 0.64 0.54 0.46
2 runs Time [s] - 591.4 427.6 358.5 345.2 350.0
 Equiv. time [s] - 295.7 213.8 179.2 172.6 175.0
 Effective speedup - 2.09 2.90 3.44 3.57 3.53
 Overall CPU usage - 1.04 0.97 0.87 0.71 0.59
3 runs Time [s] - - 587.8 484.8 438.4 464.0
 Equiv. time [s] - - 195.9 161.6 146.1 154.7
 Effective speedup - - 3.14 3.82 4.22 3.99
 Overall CPU usage - - 1.06 0.96 0.84 0.67

 
Table 2: Time spent for 160 CF evaluations with 1, 2, and 3 optimization runs in parallel.  

The equivalent time, effective speedup, and overall CPU usage are also listed. 
Optimization was stopped after 160 CF evaluations. 

 
 

 1 worker 5 workers 
 1 run 1 run 2 runs 3 runs 

Total time [s] 3870.1 1391.3 2170.5 2871.6 
Equivalent time [s] 3870.1 1391.3 1085.3 957.2 
Effective speedup 1.00 2.78 3.57 4.04 
Overall CPU usage 1.00 0.56 0.71 0.81 

 
Table 3: Performance for different numbers of concurrent  

parallel optimization runs on 1 and 5 workers. 
 



17 

 
Analysis Measurement  b A Human Computer
- Area ↓ 1000µm2 100µm2 985µm2 983µm2

OP Supply current at Vin=0V ↓ 0.5mA 0.1mA 0.49mA 0.48mA
DC Swing (50% gain drop) ↑ 2.0V 0.1V 2.09V 2.02V
 Open-loop gain (-1V..1V) ↑ 60dB 1dB 57.2dB 56.1dB
AC Unity gain bandwidth ↑ 100MHz 10MHz 83.5MHz 131.2MHz
 Phase margin ↑ 70o 1o 73.9 o 75.9 o

 Gain margin ↑ 12dB 1dB 13.0dB 13.8dB
NOISE RMS output Integ. noise (1kHz..1GHz) ↓ 3mV 0.1mV 3.75mV 2.96mV
 Output spot noise (at 10Hz) ↓ 15µV/√Hz 1µV/√Hz 16.7µV/√Hz 11.2µV/√Hz
TRAN Overshoot ↓ 0.1% 0.01% 0.11% 0.086%
 Slewrate ↑ 20V/µs 1V/µs 13.3 V/µs 21.4 V/µs
 Settling time ↓ 10ns 1ns 11.3ns 7.0ns
 Rise time ↓ 10ns 1ns 13.5ns 8.4ns
 Fall time ↓ 10ns 1ns 13.6ns 8.5ns

 
Table 4: Comparison of performance constraints (b), penalty coefficients (A),  

human-designed circuit, and computer-designed circuit worst-corner performance. 
↑ stands for maximize and ↓ for minimize. 

 


