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Abstract: Circuit sizing problem in application specific analog integrated circuit design is in most
cases limited to setting MOSFET channel widths and lengths. It is usually performed by hand by an
experienced human designer. As the circuit sizing is an optimization process by its nature, optimization
methods could be used. They always lead to one of the minima of the cost function while eventual
other minima stay unknown. To reveal different cost minima an optimisation process composed from
many individual optimisation runs is proposed. Individual runs are started from various initial points in
the parameter space. A particular initial point is determined by a heuristic method which maximises the
probability of finding a new cost function minimum in the next run. The optimization process is
demonstrated on several real operating amplifier designs.

Heuristični pristop k določevanju elementov v integriranih vezjih
Ključne besede: računalniško podprto načrtovanje, integrirana vezja, optimizacijski algoritmi,
določitev elementov.
Izvleček: Določitev dimenzij polprevodniških komponent v analognem integriranem vezju se
največkrat prevede na določevanje dolžin in širin kanalov MOSFET-ov. To delo navadno opravi
izkušen načrtovalec. Ker je celoten proces določevanja dimenzij po svoji naravi optimizacijski
postopek, bi lahko v ta namen uporabili optimizacijske metode. Le-te vedno vodijo k enemu izmed
minimumov kriterijske funkcije, medtem ko morebitni ostali minimumi ostanejo skriti. V članku
predlagamo optimizacijski proces, sestavljen iz več posameznih optimizacijskih tekov, katerih namen
je najti več različnih minimumov kriterijske funkcije. Posamezni teki so sproženi iz različnih začetnih
točk v parameterskem prostoru. Začetne točke določimo s pomočjo heuristične metode, ki maksimizira
verjetnost odkritja novega minimuma v naslednjem teku. Celoten optimizacijski proces je predstavljen
tudi na realnih primerih integriranih operacijskih ojačevalnikov.
1 Introduction
Creating a good analogue integrated circuit (or analogue part in a mixed circuit) design is still a hard
task, which usually requires senior designer knowledge and skills. There are no predefined libraries of
standard cells and networks as in the digital world. Therefore the design of an analogue circuit
consisting of a few transistors can be more time consuming than designing a fairly complex digital
circuit. Application specific integrated circuit (ASIC) designers also frequently reuse their previous
solutions and adapt them to their current needs. A circuit simulator is indispensable in this development
procedure. The computers are mainly used to analyze human designs.
Initially a suitable circuit configuration is required, which can potentially fulfil the given requirements.
This task is mostly left to the designer although several tools partially automating the topology
synthesis appeared in the past /1/–/4/. Then the circuit sizing problem has to be solved. One desires
such element sizes (e.g. MOSFET channel widths and lengths, capacitors, resistors, etc.) that required
circuit properties are met in the most robust manner. Circuit sizing is an optimization process by its
nature and one can find quite an extensive literature in this area. Sizing of nominal circuits was
considered in /5/–/6/, sizing problems accounting for parameter tolerances (parameter centering) were
addressed in /7/–/9/, and worst-case optimization in /10/–/12/. Various optimization tools were
developed, like equation based GPCAD /13/, which uses geometric programming formulation of an
optimization problem /14/ on predefined posynomial equations, AMG /15/, utilising a symbolic
simulator /16/ to obtain circuit equations, and the simulation based ASTRX/OBLX /17/. Recently
numerous papers (e.g. /12/, /18/–/23/) are addressing the sizing problem from different aspects like
process and operating tolerances, mismatch, yield and robustness.
Despite all the research efforts made circuit sizing is still a task that is addressed manually. New sizes
for the next experiment are determined by a human designer and not automatically by the optimization
method. In our opinion the automated optimization is rarely used because of three major reasons:
•  there are no general optimization tools integrated into any of the most popular circuit simulators

for ASIC design (optimization tools, e.g. /13/, /15/, /17/, are not integrated into commercial
simulators and therefore offer only very limited capabilities),

•  the mathematical formulation of the cost function, which would yield acceptable solutions, is
rather complicated and demands an experienced user (optimization algorithms can get trapped in
senseless regions of parameter space, resulting in degenerated solutions; searching for the
minimum of the cost function can also result in circuits highly sensitive to manufacturing process
and operating condition variations /21/; a possible solution is the use of implicit constraints /14/,
/20/, /23/), and



•  the results of the optimization run are not to be unlimitedly trusted (in many cases the minimum
found is not the global one, even if a global optimization method was used).

This paper focuses on the last of these three drawbacks. There exists many different gradient, quasi
gradient, and direct search optimization algorithms. A good survey of the first family can be found in
/24/. Gradient based methods are greedy by default and require the derivatives of the cost function to
be calculated at each iteration. When applied to circuit sizing, the derivatives are usually calculated by
a sensitivity analysis, meaning that the cost function can’ t be of arbitrary form. Those methods have a
strong local nature and are therefore usually used for finetuning circuits /25/.
On the other hand direct search methods /26/–/28/ do not require additional gradient computations.
Convergence properties for pattern search methods have been reported in /29/. These methods can be
classified by their behaviour as local or global. Some global methods even guarantee to find the global
minimum if certain conditions are fulfilled /30/–/31/.
Performance of an optimization method on cost functions depends on many parameters one of which is
the initial point. The same method can lead to quite different results for different initial points. Local
methods are more sensitive than global ones. The latter have always some randomness build into them,
which at least partially neutralises the importance of the proper selection of the algorithm’s initial
point.
The selection of the initial point is usually left to the user, who relies upon knowledge and intuition.
Usually a point is chosen where the circuit’s best performance is expected. If the choice is right, the
minimum of the cost function lies near and the optimization task turns to fine tuning of the circuit. But
on the other hand no additional information is gained. The optimization process just confirms the
expectations. A great part of the parameter space is left unexplored and the question of finding a better
solution remains open.
If we want to be assured that no better point exists then the whole parameter space has to be explored.
One way to do this is to optimize the circuit starting from several different initial points, and each
optimization run has to cover a different part of the parameter space. The optimization process
becomes a group of individual optimization runs.
Optimization methods have limited memory and therefore only a few points from previous iterations
are used to determine the next step. Today computers easily store all the evaluated points, while the
evaluation itself is still computationally expensive. Thus the initial point for the next optimization run
should be determined using the information obtained from evaluated points. This paper proposes a
heuristic method based on the probabilistic approach /32/–/33/. The method puts the new initial point in
a part of the parameter space, where the probability of finding a new minimum is high. It can be
applied to multidimensional parameter space and does not require significant computer effort.
Several minima are obtained in such an optimization process. The designer can decide, which one is
most appealing and may even continue with the investigation of the unexplored parts of the parameter
space. First the mathematical background of the assumptions used later in the heuristic algorithm are
highlighted. Several optimization cases of CMOS integrated operational amplifiers are illustrated and
the obtained results are commented.
2 Mathematical Background, One Dimensional Probabilistic Approach
Let E(x), x ∈∈∈∈  A ⊆  ℜ n, E : ℜ n → ℜ  denote the cost function where A denotes a feasible region. The
purpose of every optimization process is to find a global minimum x0 of the cost function E(x), E(x0) ≤
E(x), ∀ x ∈∈∈∈  A. In one dimension the feasible region of the parameter space is defined as an interval A =
[xlow, xhigh]. Let us define a continuous stochastic process f(x, ω). It assigns a function f(x) to every

outcome ω ∈∈∈∈  Ω of experiment ζ. The domain of ω is the set of all experimental outcomes Ω, and the
domain of x is a set of real numbers ℜ . Let the one dimensional cost function E(x) be equal to a
realisation of the stochastic process f(x, ω) for an outcome ω0 on the interval A.

(1)
Cost function E(x) is an arbitrary real function on the interval A. By its definition the distribution
function G(f0, x) gives the probability of an event {f(x, ω) ≤ f0} at a particular x. We assume normal

distribution for G(f0, x) with variance σ2(x) and expected value m(x).

(2)

After one or more optimization runs the cost function has been evaluated at several points. Lets say we
have k such points x1, x2, … xk, and the corresponding cost function values E(xi), i = 1, 2, … k, are

known. An event Zk is defined as {f(xi, ω) = E(xi), i = 1, 2, … k}. In other words, the event Zk occurs,
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when the stochastic process function f(x, ω) is equal to the cost function E(x) in all known points x1, x2,

… xk, for outcome ω. The event Zk becomes certain if the expected value m(x) is equal to the cost

function and if variance σ2(x) is zero at all known points. Therefore m(xi) = E(xi) and σ(xi) → 0 for i =

1, 2, … k. When mean and variance have the above properties, the distribution G(f0, x) becomes the

conditional probability of event {f(x, ω) ≤ f0 / Zk}.

Let opt be the index of a point with the lowest cost function value among known points. So the relation
E(xopt) ≤ E(xi), i = 1, 2, … k, is valid. We define a function fmin(x, ω). Its value is always lower than

E(xopt) for an arbitrary x and any outcome ω.

(3)

Figure 1: Functions fmin(x, ω) (solid) and realisations of a stochastic process f(x, ω) (dashed) for

different outcomes ω. The event Zk is certain, therefore m(xi) = E(xi) and σ2(xi) → 0, i = 1, 2, … k, k =

4.
Distribution Gmin(f0, x) of function fmin(x, ω) gives the probability of event {fmin(x, ω) ≤ f0 / Zk}, where

Zk represents a certain event as mentioned above. It can be obtained from the distribution G(f0, x) and

the definition of fmin(x, ω). The probability density function gmin(f0, x) is the derivative of the

distribution Gmin(f0, x).

(4)

(5)

Functions u(f0 - E(xopt)) and δ(f0 - E(xopt)) in (4) and (5) represent a unit step function and its

derivative, a unit Dirac impulse, respectively.
The expected value E{fmin(x, ω) / Zk} is the mean of the function fmin(x, ω) at a particular x. Because of

event Zk it is equal to the cost function’s value E(xopt) in all k known points. The question is where to

choose the new initial point for the next optimization run, if the cost function is already known in k
points. A natural decision is to set it where the expected value E{fmin(x, ω) / Zk} is minimal. To find

out a new starting point x0 a minimisation problem (6) has to be solved. The integral definition of the

expected value expresses the minimisation problem with the density function gmin(f0, x). The upper

bound of the integral can be set to E(xopt) using equation (5).

(6)
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The minimisation problem (6) can be transformed into a maximisation problem (7) using the
distribution function Gmin(f0, x) instead of the probability density.

(7)

The probability distribution and the density function of a limited random walk, also known as Wiener
process w(t), are normal with constant mean and variance increasing with t. We also assume normal
distribution for our process f(x, ω). Wiener process w(t) is a continuous function of variable t. Suppose
the cost function E(x) is continuous in the vicinity of known points, so it can be a sample path of a
Wiener process there. This assumption does not place any physically unrealistic limitations on types of
cost functions, which take place in circuit design optimization problems. Therefore we can presume a
constant expected value and a linearly increasing variance near known points. We set the mean and

variance to m(x) = E(xi) and σ2(x) = α |x – xi| around ith point. Then event Zk is certain as well. In the

neighbourhood of every determined point equation (7) becomes

(8)

The expression in equation (8) is a monotonically decreasing function of cost value E(xi) and

monotonically increasing function of distance |x – xi|. This leads to two conclusions:

•  first due to decrease with E(xi) the new initial point x0 lies rather closer to the known points with

lower cost function value, than to those with higher cost function value,
•  due to the increase resulting from |x – xi| it lies away form all known points so the distance to the

nearest one is as large as possible.
Both conclusions can be intuitively generalized to n dimensional parameter space. A simple heuristic
method described in the following section is based on this generalisation.
3 A Heuristic Method for Finding New Initial Points
The second conclusion tells us, that a new initial point has to be somewhere in the parameter space,
where the density of already evaluated points is low. If it is low, then we expect the average distance
between two nearest points to be large in general. But we have to define how to measure the density of
known points. Let us divide the parameter space into 2n equal subspaces (2n equal boxes). Let the
density be equal to the number of known points in a particular subspace, and let it be constant across
the whole subspace. A new initial point will be chosen in the subspace with the lowest density.
The first conclusion on the other hand tells us, that the contribution to the density is not always the
same for all already evaluated points. Those with lower cost function values should contribute less,
than the ones with higher cost function values. In the previous definition all of them contributed one
unit, regardless of the cost function value. Therefore known points have to be weighted. Each point will
contribute its weight, which has to be proportional to its cost. Let the weight u of a point with cost
function value E be defined by equation (9).

(9)

Emin and Emax represent the lowest and the highest cost function value among already determined

points, respectively. The point with the lowest cost function value has always weight one. The weight
of the point with the highest cost function value is given by coefficient β, and now it contributes β
times more to the density, than the lowest point.
So far all known points, for which we know, that they violate implicit constraints, are still not included
in our definition of density. They lack a cost function value E, so their weight can not be calculated by
equation (9). But those points give us some information about the cost function and therefore they have
to be taken into account. We set their weight to 2β.
Finally the heuristic algorithm for determining a new initial point for the next optimization run is
described in the repeat until loop (Fig. 2) below. The space is divided into 2n equal subspaces, until we
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find a subspace with no points determined yet. A new initial point is selected there randomly. The
algorithm is very simple, so it demands only a small amount of computational time.

Figure 2: Symbolic algorithm of heuristic initial point determination for a new optimization run.
4 Sizing Problem Cases and Results
In this section three CMOS design cases are described to illustrate the capabilities of the proposed
approach. Two simple two-stage operational amplifiers with p and n-channel differential pair (Figs. 3
and 4) and a telescopic cascode operational amplifier (Fig. 5) were optimized. Several versions of the
above three sample circuits optimized to meet different requirements were used as a part of larger
mixed signal integrated circuits. The amplifiers were designed for and produced in 0.3µm and 0.8µm
technology. The parameters varied were all transistor channel dimensions (widths and lengths), MOS
multiplier factors and also the resistances and the capacitances.

Figure 3: Operational amplifier with p-channel differential pair.

Figure 4: Operational amplifier with n-channel differential pair.
The circuit characteristics that take part in the cost function are listed in the upper part of Tables 1 and
2 . The cost function is a rather complicated mathematical formulation which combines results of
several types of analyses in several different operating conditions (variable supply and reference
voltages, variable bias current, variable temperature etc.) and manufacturing environments (variable
production process conditions given with corner transistor models) /12/. Beside searching for an
optimal nominal circuit the robustness is also taken into account. For the two-stage amplifiers
mismatching is simulated by slight model variations of one of the matching transistors. The shape of
such a complicated cost functions in multidimensional parameter space is completely unknown.
Finding a global minimum is a difficult task for any optimization method and circuit simulator since it
requires many circuit analyses. Nevertheless we expect that somewhere in the parameter space there is
a global minimum which defines the optimal solution satisfying the given requirements.
The results for the two-stage operational amplifiers are summarised in Table 1 and for the telescopic
cascode operational amplifier in Table 2. Only some of the optima found with the initial point set by
the described heuristics are given because of the tables size. The upper part of both Tables contains
nominal circuit performances. The lower part summarises parameter values in each minimum.



Multiplying factor * channel width / channel length (mw = l) ratio is given for some transistors in all
three cases. If short channel effects in submicron region are neglected then the ratio defines a transistor.
Therefore it is convenient for estimating if two solutions are equivalent.

Figure 5: Telescopic cascode operational amplifier.

property target p-channel diff. pair n-channel diff. pair
A µm2 ↓ 11619 12289 12241 10105 14151 13521 17706 14286

vpp V ↑ 3.7 3.7 3.8 3.6 3.8 3.9 3.8 3.8

vpp/vinpp ↑ 2101 2937 2153 2159 4535 4246 4232 4741

voffset µV ↓ 87 60 96 49 32 81 49 11

voutoffset mV ↓ 201 199 198 199 99 101 100 100

ip µA ↓ 727 636 674 559 689 828 754 659

f0dB MHz ↑ 20 20 20 14 16 20 14 13

pm ° ↑ 37 37 31 23 34 40 55 37
am dB ↓ -39 -37 -24 -22 -40 -32 -38 -40
CMRR dB ↓ -96 -100 -91 -97 -108 -106 -104 -102
PSRRp dB ↓ -89 -90 -112 -101 -49 -50 -46 -48
PSRRn dB ↓ -62 -62 -60 -58 -50 -51 -51 -52
noise1/f nV/Hz1/2 ↓ 100 91 80 56 114 100 102 108

noiseterm nV/Hz1/2 ↓ 9.0 9.5 9.0 10.3 8.6 9.4 9.0 8.6

trise ns ↓ 361 431 405 431 285 259 243 312

tfall ns ↓ 174 134 171 216 479 426 440 582

transistor mw / l ratio
differential pair 173 141 200 151 130 117 41 154
active load 12 9 12 4 18 21 41 14
current source 18 24 18 7 19 10 31 39



Notations: A … area, vpp … peak-to-peak voltage, vpp/vinpp … dc gain, voffset … offset voltage, voutoffset
… symmetry, ip … current consumption, f0dB … frequency at 0dB gain, pm … phase margin, am …

amplitude margin, CMRR … common mode rejection ratio, PSRRp … power supply rejection ratio to
positive terminal, PSRRn … power supply rejection ratio to negative terminal, noise1/f … noise at low

frequencies (at 100Hz), noiseterm … thermal noise at higher frequencies (at 100kHz), trise … rise time,

tfall … fall time, m transistor multiplier, w channel width and l channel length. Symbols ↑ and ↓
indicate that the desired value is as high or as low as possible.
Table 1: Results of some succesfull optimization runs for both two-stage amplifiers (0.8µm technology)

property target telescopic coscode operational amplifier
A µm2 ↓ 2795 2605 2688 2603 2735 2706 3000 2686 2905 2479

vpp V ↑ 3.0 2.7 2.9 2.8 2.8 2.9 2.8 2.8 2.3 3.1

vpp/vinpp ↑ 133 139 135 135 137 134 135 135 136 135

cmfboffset µV ↓ 24 0.4 34 1 38 5 21 0.3 25 30

ip µA ↓ 1.4 1.2 1.3 1.4 1.4 1.3 1.3 1.4 1.4 1.1

f0dB MHz ↓ 242 260 269 263 250 261 268 273 305 171

pm ° ↑ 74 73 73 75 76 70 65 73 66 79
am dB ↑ -25 -25 -26 -25 -28 -25 -20 -25 -24 -28

transistor mw / l ratio
main differential pair 290 350 290 290 230 350 290 290 410 230
auxiliary p differential pair 28 22 22 16 16 16 28 28 22 28
auxiliary n differential pair 14 20 8 8 11 14 20 20 11 11
Notations: A … area, vpp … peak-to-peak voltage, vpp/vinpp … dc gain, cmfboffset … common mode

feedback offset, ip … current consumption, f0dB … frequency at 0dB gain, pm … phase margin, am …

amplitude margin, m transistor multiplier, w channel width and l channel length. Symbols ↑ and ↓
indicate that the desired value is as high or as low as possible.
Table 2: Results of some successful optimization runs for telesopic cascode amplifier (0.3µm
technology)

The optimization method used in a particular run is not essential. In fact any local method can be used
since global methods tend to the global minimum regardless of the chosen initial point. Direct methods
are preferable since the derivatives of the cost function are not required (often impossible to calculate
without resorting to perturbation methods which are not accurate enough). So one can use any simplex,
quasi gradient (metric matrix, trust region etc.), heuristic, etc. based method. In our experiments a
heuristic simplex based method was used. The cost function was composed as a weighted sum of
deviations from the target values for nominal and worst conditions. If a particular target is fulfilled the
optimization process does not tend to improve it any further. Approximately 500 to 1000 circuit
evaluations were needed for one run to converge and on the average every third run was successful.
Thus the results in Table 2 were obtained in 30000 circuit evaluations. Comparing this result to a
performance of well known global optimization methods like simulated annealing or genetic
algorithms is encouraging since over 150000 circuit evaluations are needed to optimize a
circuit like the telescopic cascode amplifier.
From all presented cases we can see that many different solutions of the circuit sizing problem exist.
An interesting parallel can be drawn with /34/–/35/ where the entire circuit synthesis problem
(topology and sizing) was addressed by genetic programming. Uncommon circuit topology solutions
were found beside well known ones.
More or less the same circuit properties can be obtained with several different sets of circuit
parameters. Two explanations are at hand: 1.) the target values are to loose for the used circuit
configuration and for the given technology and are easily fulfilled, or 2.) the optimization run is
stopped at different trade offs among given targets. Because all requirements are never fulfilled the
second explanation is more probable. To confirm this, the same experiments were repeated with tighter
targets. The requirements remained unfulfilled and individual solutions didn’ t merge.
A closer look at the Table 2 also confirms that the solutions represent trade offs among required
targets. We can see for instance that the last two results have complementary properties. While the
solution from column nine has low vpp, pm and am it has high ip and f0dB. On the other hand the last

circuit (column 10) has opposite properties. The same observations can be made in Table 1 .



5 Conclusion
A simple heuristic method for setting the initial points of individual optimization runs was described.
The idea is based on a one dimensional probabilistic approach extended to multidimensional parameter
space. The main objective is to uniformly search the parameter space with a sequence of optimization
runs. Each run contributes some new information about the cost function shape in the multidimensional
parameter space. Different local minima are found, if they are present. Multiple solutions are obtained
providing additional insight into circuit behaviour. The designer can decide which one is the most
appropriate and continues his/her work from there with finetuning. Finetuning is usually necessary
since the obtained minimum of the cost function not necessarily satisfies the designer’s expectations. A
statistical model of the cost function was presented. The construction of cost function itself /12/ is
beyond the scope of this paper.
The method takes into account all collected cost function data. Therefore all calculated points must be
stored and some additional MBytes of RAM are occupied for that reason. But on the other hand it
requires only a small computing effort and does not take a considerable amount of time. The
optimization method used in the individual runs can be an arbitrary fast greedy (local) method. Fast
convergence of such methods ensures short runtimes since global methods (like simulated annealing or
genetic algorithms etc.) have in general slow convergence. More information is obtained instead of a
single minimum. Our method can try several different initial points in the time needed by a global
method to converge.
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