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Yield maximization is an important aspect in the design of integrated circuits. A prereq-
uisite for its automation is a reliable and fast worst performance analysis which results
in corners that can be used in the process of circuit optimization. We formulate the con-
strained optimization problem for finding the worst performance of an integrated circuit
and develop a direct search method for solving it. The algorithm uses radial steps and
rotations for enforcing the inequality constraint. We demonstrate the performance of
the proposed algorithm on real world design examples of integrated circuits. The results
indicate that the algorithm solves the worst performance problem in an efficient manner.
The proposed algorithm was also successfully used in the process of yield maximization,
resulting in a 99.65% yield.

Keywords: Worst-case analysis; MOS transistor mismatch; yield maximization; inte-
grated circuit.

1. Introduction

The design of modern analog and mixed-signal integrated circuits (IC) is heavily
based on computers. Because a large part of integrated circuits must interact with
the environment (which in turn is analog by nature), analog IC design is always
present in the design flow. The performance of analog circuits is expressed by means
of performance measures (e.g., gain, bandwidth, etc.) which are real numbers. A
circuit is said to perform adequately if these performance measures satisfy the
design requirements. Design requirements are expressed as inequalities imposed on
the performance measures (e.g., bandwidth must be above 10MHz).
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The performance of an analog circuit is affected by three groups of parame-
ters.1 The first group are the design parameters. They can be adjusted by the
designer in the process of IC design. The second group are the range parameters
that describe the environment in which the circuit operates. Two very common
range parameters are temperature and supply voltage. The circuit is expected to
exhibit adequate performance across the whole range of range parameters (e.g., for
temperatures between −20◦C and 80◦C). Finally the third group comprises the so-
called statistical parameters. These parameters vary randomly due to the random
nature of the manufacturing process. Random variations are the reason why some
manufactured circuits do not perform adequately across the whole range of range
parameters. The share of circuits that perform adequately across the whole range
of range parameters subject to variations of statistical parameters is also referred
to as the yield. Considering only one performance measure results in a partial yield
for that performance measure.

The goal of robust IC design is to choose the design parameters in such manner
that the design requirements are fulfilled across the whole range of range param-
eters for as many circuits as possible (yield maximization).2 A prerequisite for its
automation is a fast and reliable method for obtaining either the yield itself or a
measure of the circuit’s worst performance.3,4

Direct yield evaluation is a very time-consuming task. Therefore various
approaches were developed for fast yield estimation.5,6 One of the more recent
is an approach based on worst case distance (WCD) proposed by Graeb.7 WCD
depends on the design parameters and can be directly translated into a partial
yield estimate. Yield can be estimated from the WCD values of performance mea-
sures without additional circuit simulations. Obtaining the WCD is an optimization
problem with a simple objective and a complicated nonlinear constraint that can
only be evaluated by simulating the circuit.

On the other hand, robust design can also be automated using worst perfor-
mance analysis. The analysis results in worst parameter values for every perfor-
mance measure. Many of the proposed approaches to worst performance analysis
assumed that the mean values and variances of statistical parameters are at the
same time the design parameters.8,9 Such methods are well suited for board-level
design, but not for IC design.

In IC design, worst performance analysis results in the values of range and sta-
tistical parameters for which a performance measure violates the respective design
requirement as much as possible, or at least comes closest to violating it. Generally
every performance measure has a corresponding set of worst case parameter val-
ues (which in turn depend on the design parameters). The value of a performance
measure at the corresponding set of worst case parameters is also referred to as the
worst performance measure (WPM). If all WPMs satisfy the design requirements
we can safely say that a robust design has been achieved.

To obtain a WCD of a performance measure in an efficient manner, one must be
capable of computing the gradient of the performance measure with respect to the
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statistical and range parameters. The values of performance measures are usually
obtained by computer simulation. Most simulators do not calculate the derivatives
of the results with respect to the input (statistical and range) parameters. In such
a case, gradients can be obtained using finite differences (often with a significant
numerical error) or one can resort to so-called direct search optimization methods
that require no derivatives.10 Because most direct search methods cannot handle
general nonlinear constraints and still reach a solution in a reasonable time, they
are not well suited for the WCD problem.11,12

In this paper we propose a direct search method for solving the WPM problem,
which is an alternative to the WCD problem. Because of simple constraints that
appear in the WPM problem, direct search methods are good candidates for finding
its solution. The resulting range and statistical parameter values define corners for
the circuit optimization.13 In turn they can be used to obtain a robust design in
a manner similar as Mukherjee did.14 The main focus of this paper is not on the
yield optimization itself. We concentrate on the subproblem of finding the worst
performance measure (e.g., the corners for the robust design).

We first formulate the WPM problem and its relation to the WCD problem.
We define the underlying optimization problem in Sec. 2. In Sec. 3 we propose a
direct search method that is well suited for solving the WPM problem. The method
handles the inequality constraint of the WPM problem by choosing appropriate trial
steps. Section 4 illustrates the method by finding the corners corresponding to the
design requirements of some real-world IC designs. The computational cost of the
proposed method is illustrated by listing the equivalent number of finite difference
gradient evaluations. We also use the algorithm as the basis for yield maximization
of one of the test circuits. Finally, Sec. 5 gives the conclusion.

Notation. Real and integer numbers are denoted by R and Z, respectively. Vec-
tors are assumed to be column vectors and denoted by a bold typeface (x). The
dot product of two vectors is written as xTy and the 2-norm of a vector as ‖x‖.
Components of a vector are denoted by italic typeface with a subscript acting as
the component index (ai).

2. Problem Definition

2.1. Relevant notions from IC design

Let fi denote one of the m performance measures. Every design requirement can
then be formulated as fi ≥ Fi (for requirements of the form fi ≤ Fi we simply
replace fi and Fi with −fi and −Fi). Fi is also referred to as the goal. For a prede-
fined circuit topology the performance measures depend on the circuit’s parameters.
Let xD, xR, and xS denote the design, range, and statistical parameters. Similarly
let nD, nR, and nS denote the number of design, range, and statistical parameters,
respectively.

The range parameters (as the name implies) come from a range of values. Let
R denote the set of possible range parameter values. If, for instance, our range
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parameters are the temperature and the supply voltage with values from −20◦C
to 80◦C and from 1.6V to 2.0V, the set R is defined as [−20, 80]× [1.6, 2.0]. R is
often referred to as the tolerance body of the range parameters.

Statistical parameters are usually modeled with a normal joint probability dis-
tribution function (JPDF).

p(xS) =
1

(
√

2π)nS

√
detC

exp
[−β2(xS)

2

]
, (1)

where β2(xS) = (xS − xN
S )TC−1(xS − xN

S ), xN
S is the vector of mean statisti-

cal parameter values (also referred to as the nominal statistical parameters) and
C denotes the covariance matrix. If the JPDF is continuous but not normal we
can make it normal by applying an appropriate transformation to the statistical
parameters. As a matter of fact we can always transform such JPDFs into a normal
distribution with xN

S = 0 and C = I where I is the identity matrix. Therefore with-
out loss of generality we assume the latter distribution throughout the remainder
of this paper.

Note that statistical parameters are (unlike range parameters) unbounded.
Inequality β(xS) ≤ βW

i is the most natural way of defining a tolerance body for a
normal JPDF. It defines a so-called tolerance ellipsoid (in our case where C = I, it
is a hypersphere with radius equal to βi). Statistical parameters arise from the vari-
ations of the manufacturing process also referred to as mismatch. Due to mismatch,
two equally designed devices exhibit different electrical behavior and consequently
manufactured circuit performances differ from their desired values in a random
manner.15–18 Mismatch effects can be divided in two components: stochastic and
systematic. The stochastic component can be reduced with either better process
control (usually not an option for a circuit designer) or trade-offs (with circuit
area) in the design stage while the systematic component can be reduced in an
effective way with proper layout.19, 20

The circuit’s performance measures can now be written as fi(xD,xR,xS). Statis-
tical parameters are the reason why not all manufactured circuits satisfy the design
requirements across all xR ∈ R. The share of manufactured circuits that satisfy
one particular design requirement is called yield partition and can be obtained as

Yi(xD) =
∫
xS∈R

nS

p(xS)hi(xD,xS)dxS , (2)

where hi(xD,xS) is the indicator function of ith performance measure (i.e., it is 1 if
fi(xD,xR,xS) ≥ Fi for all xR ∈ R and 0 otherwise). The set {xS : hi(xD,xS) = 1}
is also referred to as the acceptance region of ith performance measure. The accep-
tance region and the yield partition are both functions of the design parameters.

Total yield is the share of manufactured circuits that satisfy all design require-
ments across all xR ∈ R. It is defined in a way similar to Eq. (2) except that
hi(xD,xS) is replaced by

∏m
i=1 hi(xD,xS). As all yield partitions approach 1 the

total yield also approaches 1.
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2.2. The WCD and the WPM problem

Graeb has shown that a yield partition (Yi) can be closely approximated using
WCD (βi(xD)), which in turn is defined as

βi(xD) = min β(xS) subject to min
xR∈R

fi(xD,xR,xS) ≤ Fi , (3)

if minxR∈R fi(xD,xR,xN
S ) ≥ Fi and

βi(xD) = −min β(xS) subject to min
xR∈R

fi(xD,xR,xS) ≥ Fi , (4)

otherwise.1 Figure 1(a) illustrates the WCD problem for a positive WCD. The WCD
(βi) is obtained by finding the point where contour minxR∈R fi(xD,xR,xS) = Fi

touches the sphere β(xS) = βi with the smallest radius. The distance of the point
from the origin is the WCD.

A good approximation to a yield partition can then be obtained as

Yi(xD) ≈ Θ[βi(xD)] = (2π)−
1
2

∫ βi(xD)

−∞
exp

(−t2

2

)
dt

=
1
2

[
1 + erf

(
βi(xD)√

2

)]
. (5)

Figure 1(a) illustrates this approximation. The true boundary of the acceptance
region is replaced by a hyperplane (dashed line). The approximate yield partition
Yi can then be calculated from βi using Eq. (5). The integral of the JPDF over

i

xS2

xS1

f < Fi

if > Fi

if =Fi

Error

xS2

xS1

Wfi

Wβi

βi

Wβi ’

Wfi ’

(a) (b)

Fig. 1. (a) The WCD problem illustrated for two statistical parameters. The contours of
minxR∈R fi(xD, xR,xS) for a fixed set of design parameters xD are depicted by solid curves. The

acceptance region of fi is shaded in dark gray. βi denotes the WCD. The hashed region results in
the acceptance region approximation error when Yi is replaced by Θ[βi] (Eq. (5)). (b) Two WPM
problems, one for βW

i < βi and one for βW ′
i > βi. The solution (fW

i and fW ′
i , respectively) is

denoted by a dot. The two solutions satisfy fW
i > Fi > fW ′

i . See Fig. 1(a) for the explanation
of contours and shading. If the solution of the WPM problem for βW

i satisfies fW
i ≥ Fi then the

yield partition satisfies Yi ≥ Θ[βW
i ] (within the acceptance region approximation error).
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the hashed region in Fig. 1(a) results in the acceptance region approximation error
and is usually small due to the nature of the normal distribution.1 Maximizing the
yield now becomes equivalent to maximizing the smallest yield partition, which in
turn means that the WCD of the performance measure with the smallest βi must
be maximized.

Instead of maximizing the smallest WCD we can take a different approach.
β(xS) ≤ βW

i defines a tolerance body in the space of statistical parameters for ith
performance measure. Together with the tolerance body of the range parameters
(R) they define the search space in which we are looking for the smallest (worst)
value fW

i (xD) of performance measure fi (WPM problem):

fW
i (xD) = min

xR∈R,β(xS)≤βW
i

fi(xD,xR,xS) . (6)

Note that in Eq. (6) βW
i no longer represents the WCD, but a user defined constraint

corresponding to the ith performance measure. The following estimate holds (within
acceptance region approximation error)

Yi(xD) ≥ Θ[βW
i ] . (7)

By maximizing fW
i (xD)−Fi we maximize the yield partition Yi(xD). If we do this

for all performance measures simultaneously we maximize the total yield. Typically
one would choose βW

i = 3 which would result in Yi ≥ 0.9987 for a circuit satisfying
fW

i ≥ Fi.
Figure 1(b) illustrates the WPM problem. βW

i and βW ′
i satisfy βW

i ≤ βi ≤ βW ′
i .

Due to this the corresponding solutions of the WPM problem satisfy fW
i ≥ Fi ≥

fW ′
i . Many performance measures have no local minima within the search space,

so the worst point is often located at β(xS) = βW
i (just as in Fig. 1(b)).

Because all constraints in the WPM problem are simple (e.g., box constraints
on the range parameters and a spherical constraint on the statistical parameters), it
can be solved by adapting a direct search method to the nature of these constraints.

2.3. The optimization problem arising from the WPM problem

Denote by R
n a n-dimensional Hilbert space and let S1 and S2 be two orthogonal

subspaces of R
n for which R

n = (S1 ⊕ S2). Then every x ∈ R
n can be uniquely

expressed as x = PS1(x)+PS2(x) where PS(x) denotes the orthogonal projection of
x on subspace S. Let {ei : ‖ei‖ = 1, i = 1, . . . , n1} and {bi : i = 1, . . . , n2} denote
an orthonormal linear basis for S1 and S2, respectively. Note that n1 + n2 = n.
Then every x ∈ R

n can be expressed with the basis vectors as

x =
n1∑
i=1

xiei +
n2∑
i=1

xn1+ibi , (8)

where
∑n1

i=1 xiei = PS1(x) and
∑n2

i=1 xn1+ibi = PS2(x).
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We are trying to solve the the following optimization problem

min
x∈Rn

f(x) subject to , (9)

‖PS1(x)‖ ≤ βW , (10)

xLi ≤ xi ≤ xHi , i = n1 + 1, n1 + 2, . . . , n1 + n2 , (11)

where xLi < xHi and βW > 0. Constraint Eq. (10) defines a closed ball in subspace
S1 while the inequality constraints Eq. (11) are box constraints in subspace S2. The
ith left (right) inequality in Eq. (11) defines the ith lower (upper) box constraint.
Note that subspaces S1 and S2 correspond to the space of statistical and range
parameters, respectively.

We try to solve problem Eqs. (9) to (11) using direct search. A prerequisite for
the convergence of direct search methods to a local minimizer of a continuously
differentiable function is that the search directions conform to the boundary of
the search region. This can be achieved by using steps that in limit (as step size
approaches zero) span the tangent space and the normal space.21, 22

This is straightforward for orthogonal box constraints in subspace S2. One sim-
ply uses all unit vectors that are normal to bounds as search steps. For subspace S1,
directions that span the tangential plane of the hypersphere and two radial direc-
tions can be used. Using directions chosen in this manner a simple barrier approach
can be used for handling the constraints.

3. The Proposed Algorithm for Solving the WPM Problem

3.1. Moving on the surface of a hypersphere

The steps that in limit span the tangential space of a hypersphere

‖x‖ = βW ; x ∈ R
n1 , (12)

in subspace S1 can be defined using rotations. Take for instance, point x on the
surface of hypersphere Eq. (12). A rotation of vector x can be uniquely described
by a two dimensional plane and the angle of rotation. The plane is defined by x and
an additional vector a �= 0 where x and a are linearly independent. The rotation
of vector x by an angle ϕ toward a can then be expressed using vector a′ that lies
in the above mentioned two dimensional plane and is orthogonal to x:

a′ = a− aTx
‖x‖2

x . (13)

The rotated vector x′ is obtained from

x′ = rotate(x,a, ϕ) =




x cosϕ +
a′

‖a′‖‖x‖ sin ϕ ; x and a linearly independent ,

x ; otherwise .

(14)

The case when x and a are not linearly independent is included for formal reasons
and makes the description of the algorithm more concise. Effectively it means that
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in such case no rotation is performed. If the hypersphere is defined by Eq. (10), a
step on the surface of the hyperspheres can be expressed as

x′ = rotate1(x,a, ϕ) = rotate[PS1(x),PS1(a), ϕ] + PS2(x) . (15)

It is easy to prove that vector x′ also represents a point on the hypersphere.

3.2. Moving in radial direction

Radial search directions span the normal space of constraint Eq. (12). We define a
radial step as

x∗ = radial(x, ∆) = x +
x

‖x‖∆ , (16)

where ∆ is the step size. A problem can occur when ‖x∗‖ = 0. For such point no
rotations are performed. This weakness can be removed by avoiding steps that fall
within βmin of 0. If a radial step in direction x/‖x‖ · ∆ results in point x∗ inside
the hypersphere (‖x∗‖ < βmin) then the step is modified so that the resulting point
x∗∗ lies on the surface. It can be expressed as:

x∗∗ = − x
‖x‖βmin . (17)

If the hypersphere is defined by Eq. (10), a radial step together with Eq. (17) can
be expressed as

x∗ = radial1(x, ∆, βmin)

=




radial[PS1(x), ∆] + PS2(x) ; ‖radial[PS1(x), ∆]‖ ≥ βmin ,

− PS1(x)
‖PS1(x)‖βmin + PS2(x) ; otherwise .

(18)

3.3. The proposed algorithm

The idea for the proposed algorithm presented in this section comes from the Hooke–
Jeeves algorithm which consists of two parts.23 The first part uses trial steps and
searches for a lower value of the function f in the neighborhood of the current
point. If a better point is found, the second part performs a speculative step which
is supposed to speed up the search. After a speculative step is taken, the function
is not evaluated. The algorithm takes a trial step superimposed to the speculative
step and if it produces descent with respect to the last successful trial step, the
speculative step is considered successful. If the trial step fails, the speculative step
is considered as failed and the algorithm returns to the last successful trial step.
A detailed description of trial and speculative steps can be found in the original
paper.23

Suppose we are trying to solve problem Eqs. (9) to (11). The proposed algo-
rithm takes constrains (Eqs. (10) and (11)) into account by performing trial and
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speculative steps that conform to the boundary of the search region. If constrains
are violated, the barrier approach is used. This is the first of the two main differ-
ences between the proposed algorithm and the original unconstrained Hooke–Jeeves
algorithm. The second main difference is that the proposed algorithm searches in
two subspaces simultaneously use different trial and speculative steps for every sub-
space. For this purpose two new kinds of steps are introduced: rotations and radial
steps.

Let us define a few things in order to simplify the description of the proposed
algorithm. Constraints Eqs. (10) and (11) can be violated when the algorithm makes
a step. Function Ω1(x):

Ω1(x) =




x ; ‖PS1(x)‖ ≤ βW ,

PS1(x)
‖PS1(x)‖βW + PS2(x) ; ‖PS1(x)‖ > βW ,

(19)

makes sure constraint Eq. (10) is not violated by moving points that violate the
constraint to the boundary of the search region. A similar function can be defined
for enforcing the constraints Eq. (11) in subspace S2:

Ω2(x) =




xi ; 1 ≤ i ≤ n1 ,

xi ; n1 + 1 ≤ i ≤ n1 + n2 ∧ xLi ≤ xi ≤ xHi ,

xLi ; n1 + 1 ≤ i ≤ n1 + n2 ∧ xi < xLi ,

xHi ; n1 + 1 ≤ i ≤ n1 + n2 ∧ xi > xHi .

(20)

We denote the composite of functions Ω1 and Ω2 by

Ω(x) = Ω2(Ω1(x)) . (21)

Function

PT (x, ∆, i) =




rotate1[x, ei, ∆i] ; 1 ≤ i ≤ n1 ,

radial1[x, ∆i, βmin] ; i = n1 + 1 ,

x + ∆ibi−n1−1 ; n1 + 2 ≤ i ≤ n1 + n2 + 1 ,

(22)

produces a trial step across subspaces S1 and S2. The first type of trial steps in
subspace S1 are rotations of PS1(x) toward some basis vector ei. If ei is collinear
with PS1(x) the corresponding trial step is omitted (which is handled in Eq. (14) by
omitting the rotation). The second type of trial steps in subspace S1 are radial steps.
Trial steps in subspace S2 are the same as those in the original Hooke–Jeeves algo-
rithm. The step size ∆ is given by ϕ and R for subspace S1 and Φ for subspaces S2:

∆i =




ϕ ; 1 ≤ i ≤ n1 ,

R ; i = n1 + 1 ,

Φ ; n1 + 2 ≤ i ≤ n1 + n2 + 1 .

(23)

Radial trial steps in subspace S1 and trial steps in subspace S2 are considered suc-
cessful if they result in simple descent (i.e., the function value at the new point
is lower than at the old point). A more strict requirement is imposed on trial
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steps that are rotations in subspace S1. They must produce sufficient descent. The
amount of descent that is considered sufficient is prescribed by γ. This is one of the
requirements that make sure the algorithm is convergent.21

di =




γ ; 1 ≤ i ≤ n1 ,

0 ; i = n1 + 1 ,

0 ; n1 + 2 ≤ i ≤ n1 + n2 + 1 .

(24)

∠TB denotes the angle between the projections of xB and xT to subspace S1 (see
proposed algorithm, label 1). Similarly, DTB represents ‖PS1(xT )‖ − ‖PS1(xB)‖.
The proposed algorithm for solving the WPM problem can now be stated.

Choose x0 satisfying Eqs. (10) and (11).
Choose ϕ > 0, R > 0, Φ > 0, γ > 0, 0 < βmin < βW , r > 1, δ > 1 and α > 1.
xB := x0, fB := f(xB), xT := xB , and fT := fB

sp := 0;
while not stopping condition satisfied do

if fT < fB then
// attempt speculative step
sp := 1;

1: xSP := rotate1 [xB,xT , α∠TB]
xSP := radial1[xSP , αDTB , βmin];
xSP := xSP + αPS2(xT − xSP );
xB := xT ; fB := fT ;
xT := Ω(xSP );

else
// speculative step failed
sp := 0;
xT := xB; fT := fB;

end
2: for (i := 1, n1 + 2, 2, 3, . . . , n1 + 1, n1 + 3, n1 + 4, . . . , n1 + n2 + 1) do

// trial step (+)
xTtemp := Ω(PT (xT , +∆, i));
if f(xTtemp) < fT − di then

// trial step (+) accepted
xT := xTtemp; fT := f(xTtemp);

end
3: if f(xTtemp) ≥ fT − di or sp = 1 then

// trial step (-)
xTtemp := Ω(PT (xT ,−∆, i));
if f(xTtemp) < fT − di then

// trial step (-) accepted
xT := xTtemp; fT := f(xTtemp);

end
end
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4: if sp = 1 and fT ≥ fB and i = n1 + 2 then
break;

end
end
if sp = 0 and fT ≥ fB then

// all trial steps failed
ϕ := ϕ/r; R = R/r; Φ := Φ/r;
γ := γ/(rδ); βmin := βmin/r;

end
if Φ < π/36 then

// stopping condition is satisfied
break;

end
end

The step acceptance criterion for rotations is more strict than in the Hooke–Jeeves
algorithm. We require sufficient descent instead of simple descent. After a specu-
lative step is taken, the proposed algorithm performs trial steps in both directions
(+ and −) and accepts the one that results in greater reduction of f (proposed algo-
rithm, label 3). This helps avoid the situation when a speculative step in one direc-
tion is followed by an accepted trial step in the opposite direction, which reduces
the effect of the speculative step. The fact that some trial points are identical to
xT because Ω is applied to the result of PT , helps reduce the number of function
evaluations. If a trial point is identical to xT , the trial step can be considered as
failed without evaluating f because such steps result in no descent.

The for statement (proposed algorithm, label 2) has a nonstandard trial step
series. The reason is that the speculative step is accepted if the first trial step in
subspace S1 (corresponding to i = 1) or subspace S2 (corresponding to i = n1 + 2)
produces descent.

The proposed algorithm is also suitable for optimization problems where either
n2 = 0 or n1 = 0. In this case the indices (i) traversed by the for statement
(proposed algorithm, label 2) are i = 1, . . . , n1 + 1 or i = 1, . . . , n2, respectively.
In this case, the speculative step is followed by the first trial step in only one
subspace. Therefore the condition of the last if statement (proposed algorithm,
label 4) changes from i = n1 + 2 to i = 1.

The algorithm can be proved to converge to a first-order constrained local opti-
mum of a continuously differentiable function (performance measure) using known
techniques.21

4. Examples

Analog integrated circuits presented in this section provide vital functions to many
analog and mixed signal circuits. For the statistical parameters we limit ourselves to
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two electrical parameters of every MOS transistor: threshold voltage (VT ) and cur-
rent factor (K). In subsequent examples the Pelgrom model for transistor mismatch
is used16:

σ(∆VT ) =
AVT√
WL

, (25)

σ

(
∆K

K

)
=

AK√
WL

. (26)

In this model the difference between the values of VT and K of two identically
designed transistors with width W and length L (note that W and L are design
parameters) is modeled by a normal JPDF with zero mean, zero correlation, and
standard deviations that depend on transistor dimensions. The threshold voltage
and the current factor of one particular transistor can then be expressed as

VT = µVT + NVT (0, 1)
AVT√
2WL

, (27)

K = µK

[
1 + NK(0, 1)

AK√
2WL

]
, (28)

where µVT and µK represent the mean value of threshold voltage and current factor,
and NVT (0, 1) and NK(0, 1) denote two uncorrelated normal random variables with
zero mean (xN

S = 0) and standard deviation 1. If we choose these normal random
variables as our statistical parameters, we have a total of 2M statistical parameters
where M is the number of transistors in the circuit. Furthermore, β(xS) = βW

i

defines a sphere and the proposed algorithm can be directly applied to the calcula-
tion of the worst performance measure value fW

i . A more advanced mismatch model
can be used by changing the formulas that define the variances and covariances of
statistical parameters and applying a linear transformation so that the spherical
shape of the JPDF is restored.24

In the subsequent examples, worst-case values of performance measures for sev-
eral circuits have been calculated. All circuits in this paper have been simulated
using the SPICE OPUS simulator and the BSIM3 model of a 0.18 µm process tech-
nology (predictive technology model).25–27 The mismatch parameters AVT and AK

were obtained from Kinget’s paper.28

The computation of the worst-case value of a performance measure fW
i can be

divided in three major steps. In the first step, statistical parameters xS are kept
unchanged at 0 and only range parameters xR are subject to optimization. First,
the performance is measured at the maximum and the minimum value of each range
parameter, while the remaining range parameters are left at their nominal values.
Based on the results, the extreme values of range parameters are combined in a
manner that would yield the worst performance measure value if the performance
was a linear function of the range parameters. The resulting set of extreme range
parameters is used as the starting point for the proposed algorithm. If the perfor-
mance is not a linear function of range parameters, then such initial point may not
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be ideal. In this case, the proposed algorithm may require additional performance
evaluations. Our experience shows that the proposed approach reduces the number
of performance evaluations for most real-world cases. In this step, statistical param-
eters are not subject to optimization and are kept at their nominal value xN

S = 0.
The algorithm results in a range parameter vector (xW0

R ). This step often speeds up
the remainder of the procedure because worst range parameter values are usually
independent of statistical parameters.

In the second step, the initial sufficient descent γ and the initial gradient direc-
tion with respect to the statistical parameters are calculated. For every statistical
parameter xSj (where j = 1, . . . , nS) two circuit simulations are performed, one
for xSj = +βW

i and one for xSj = −βW
i resulting in f+j

i and f−j
i . All other sta-

tistical parameters are set to 0 and range parameters are set to xW0
R . In total we

have 2nS circuit simulations with 2nS values of the ith performance measure. Let
fmax

i and fmin
i denote the largest and the smallest value of fi obtained in these 2nS

simulations. The initial sufficient descent is then obtained as

γ =
(fmax

i − fmin
i )

10
. (29)

Pairs of values f+j
i and f−j

i (where j = 1, . . . , nS) enable us to estimate the gradient
∇fi of fi with the central difference formula. This gradient helps us choose an
initial guess of the worst statistical parameters for the third step where the main
part of the fW

i computation takes place. In this step, both range and statistical
parameters are subject to optimization. The initial values are set to xR = xW0

R

and xS = βW
i ∇fi/‖∇fi‖. The algorithm results in the worst performance measure

value fW
i and the corresponding xW

R and xW
S . Throughout all examples we have

chosen βW
i = 3, which corresponds to a 99.87% yield partition.

One may argue that using a local optimization method like the one we are
proposing would not yield the true WPM value because it is prone to getting
trapped in local minima (local worst performance). But if we consider that cur-
rent state-of-the-art method in WCD computation also uses a local search method
(sequential quadratic programming — SQP) and produces good results on real-
world circuits,7, 29 we conclude that the performance measures of most circuits
have few local minima within the commonly used tolerance bodies of statistical
and range parameters.

The initial step size for the statistical parameters was set to ϕ = π/4 and
R = βW

i /2 (third step of the algorithm). The initial value of βmin was set to βW
i /3.

Range parameters were normalized in such manner that full range corresponded to
the [−π, π] interval. The initial step for the range parameters was Φ = π/4. The
value of r, α and δ was set to 6, 2, and 2, respectively.

4.1. Performance of the proposed algorithm

All examples have two range parameters in common: temperature ranging from
−20◦C to 80◦C and supply voltage ranging from 1.6V to 2.0V. The simple
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Fig. 2. The test circuits: (a) a simple operational amplifier; (b) a beta multiplier reference;

(c) a bandgap reference; and (d) a comparator.

operational amplifier case has an additional range parameter — the bias current
ranging from 80µA to 120µA.

We test the performance of the proposed algorithm on four test circuits depicted
in Fig. 2. For the simple operational amplifier (OPAMP) the swing at gain is mea-
sured as the range of output voltage for which the differential gain is above 50%
of the differential gain at zero input. The offset voltage is expressed as the upper
and the lower bound on the output voltage variation at zero input voltage arising
from statistical parameter variations. Each transistor of the OPAMP contributes
2 statistical parameters except for transistors MN1S and MP1S that are used for
shutting down the amplifier and thus have no influence on its performance.30

For the beta multiplier reference (BMR) circuit, the current that flows through
resistance R is copied to other branches of a circuit that utilizes the BMR using
gate voltages VBIASP and VBIASN . Ideally the reference current should exhibit no
temperature dependence nor supply voltage dependence. This is, of course not true
in practice therefore we observe its variation with respect to the two range param-
eters. In this circuit there are 16 statistical parameters (MSU1, MSU2, and MSU3

compose the start-up circuit and result in no additional statistical parameters).30
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The bandgap reference (BGR) circuit is a low power CMOS circuit based on
resistive subdivision.31 It has 20 statistical parameters. Transistors M4, M5, and
M6 comprise the start up circuit and contribute no statistical parameters. In results
we list the same performance measures as for the BMR circuit.

In the comparator circuit (Fig. 2(d)) variations of statistical parameters cause
a significant increase of hysteresis. The BMR reference circuit (see Fig. 2(b)) was
used as a source of reference current for the comparator. The complete compara-
tor has 54 statistical parameters (16 due to the BMR circuit and 38 due to the
comparator).30

The results of the worst case analysis are listed in Table 1. An upward (down-
ward) pointing arrow indicates that one desires the measure to be as high (low)
as possible. The columns list the performances measures (fi) and their values at
nominal statistical (xN

S ) and nominal range (xN
R ) parameters (fN ), the worst fi

across range parameters (i.e., at xW0
R and xN

S ) obtained in the first step (fWN ),
and the worst fi across both range and statistical parameters (fW ) (obtained in the
third step). The numbers in parenthesis give the number of performance measure
evaluations (simulations) in the first step (the fWN column) and second and third
step (the fW column).

The fifth and sixth columns lists the worst value (fMC) of 500,000 Monte-
Carlo simulations and the results of the WPM algorithm (fW

MC) when the initial
point was set to the worst case obtained by the Monte-Carlo analysis. The range
and statistical parameters of Monte-Carlo samples were randomly chosen from the
box (Eq. (11)) and the closed ball (βW

i ≤ 3). The comparison of the Monte-Carlo-
based results (fMC and fW

MC) with the results obtained by the proposed algorithm
(fW ) indicates that the proposed method is a reliable way for finding the worst
performance measure. The proposed algorithm found the same or even better result
than fW

MC in all cases.
The proposed algorithm’s performance is also listed in Table 1. The numbers

in parentheses and the iter column list the number of performance measure eval-
uations (effectively this is the number of circuit simulations). In the last column,
the equivalent number of performance measure gradient evaluations is listed. We
assume that the central difference formula is used for gradient evaluation. As it can
be seen from the table the WPM evaluation using the proposed algorithm in most
cases corresponds to 3–7 gradient evaluations. This indicates that the proposed
optimization algorithm is an efficient approach for solving the WPM problem.

In a paper by Antreich et al., the number of modified SQP iterations for solving
the WCD problem is between 5 and 9.7, 32 Note that one SQP iteration involves
one gradient evaluation. Beside the gradient evaluation, the line search and the
second-order correction also contribute to the number of performance evaluations.
By taking this into account, we can conclude that the proposed algorithm for solving
the WPM problem has similar performance as the state-of-the-art algorithm for
solving the WCD problem.
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4.2. An example of yield maximization

The proposed WPM algorithm can be used for obtaining a robust design with a
high yield. We demonstrate the approach on the operational amplifier example. The
results are in Table 2. The initial circuit has good nominal performances (fN

ini) but
many of its worst performance measures fW

ini fail to satisfy the design requirements
(goal) which is the cause of low yield (Y ≈ 0%). To maximize the yield, the pre-
sented WPM algorithm was included in an optimization loop where the goal was
to make all WPM values better than the corresponding goals. We chose βW

i = 3
which corresponds to a 99.87% yield.

In the yield maximization algorithm, the proposed WPM algorithm and a stan-
dard parameter optimization algorithm are combined. First, the WPM algorithm
is used to find a set of worst range and statical parameters for every performance
measure. Next, the design parameters of the circuit are optimized so that all per-
formance measures satisfy the respective goals for the corresponding worst range
and statistical parameter values obtained by the WPM algorithm. The resulting
circuit is subject to another WPM algorithm run resulting in new worst range
and statistical parameter values which are added to the set of worst parameters.
The optimization of design parameters is restarted with the updated set of worst
range and statistical parameters. The two algorithms take turns until the worst
performance obtained by the WPM algorithm satisfies all design requirements.

After the optimization is finished, the worst performance of the circuit (fW
opt)

satisfies all design requirements. This means that the yield of such a circuit should
be above 99.87%. We verify this by performing a 10,000 sample Monte-Carlo anal-
ysis on the resulting circuit. The performance of every Monte-Carlo sample is taken
at the corresponding worst range parameter values obtained by a WPM analysis.
The Monte-Carlo analysis resulted in a 99.65% yield. Note that the obtained yield

Table 2. The performance of the operational amplifier before
and after yield maximization.

Measure name Goal fN
ini fW

ini fW
opt

Slew rate rise [ V
µs

] > 4 42 29 8.6

Slew rate fall [ V
µs

] > 4 47 37 8.1

Settling time rise [µs] < 1.0 0.52 0.54 0.63
Settling time fall [µs] < 1.0 0.53 0.55 0.62
Delay rise [ns] < 150 4.9 8.3 34
Overshoot [%] < 10 7.1 11.4 9.8
Undershoot [%] < 10 6.7 12.0 5.2
Swing at gain [V] > 1.0 1.37 1.13 1.44
Phase margin [◦] > 55 59.4 54.0 78.8
Unity gain BW [MHz] > 8 99.5 52.7 8.0
Gain at 0Hz [dB] > 60 60.0 58.4 60.3
Out offset (upper) [mV] < 15 0 36.1 15.0
Out offset (lower) [mV] > −15 0 −36.0 −14.9
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has an error of ±0.19% due to a limit of 10,000 samples in the Monte-Carlo analy-
sis. The whole process (WPM analysis and optimization combined) took 22.8 hours
(115,698 circuit simulations) on a 3.0 GHz computer. The approach can be paral-
lelized to great extent, most notably the performance of a circuit with given design
parameters at different sets of range and statistical parameters can be calculated
in parallel. Because there is at least one such set for every performance measure
we expect speedups proportional to the number of performance measures subject
to optimization.

5. Conclusion

Obtaining a high yield is one of the key points of IC design. The automation of
the design for yield process relies on algorithms for worst case evaluation, which
in turn solve a particular optimization problem. Because design for yield is also an
optimization problem, we have two nested optimizations. This requires the inner
optimization algorithm to be as fast as possible. Because most circuit simulators
do not evaluate the gradients of the performance measures, the most natural way
to approach such problems is a direct search.

The worst case of a circuit can be expressed in several ways. The worst perfor-
mance measure (WPM) approach is well suited for direct search. It results in a con-
strained optimization problem with bound constraints and an inequality constraint.
We proposed a direct search algorithm for solving this problem. The algorithm
draws its inspiration from the Hooke–Jeeves unconstrained direct search algorithm.
The constraints are enforced by using the barrier approach and a set of search
directions that conform to the constraints. The convergence of the algorithm to a
first-order constrained local optimum of a continuously differentiable function can
be proved using established techniques.

The proposed algorithm’s performance was demonstrated on several IC designs.
The proposed WPM algorithm finds the real (global) worst-case of a performance
measure in all cases, despite the fact that it is a local search method. The compu-
tational complexity of the algorithm was measured by the number of performance
measure evaluations needed for obtaining the WPM value. In most cases the algo-
rithm took the equivalent of 3–7 finite difference gradient evaluations to obtain one
WPM value. This indicates that the proposed algorithm solves the WPM problem
in an efficient manner and is a good candidate for inclusion in an automated design
for yield algorithm. The comparison of the equivalent number of gradient evalua-
tions to the state-of-the-art algorithm for solving the WCD problem (which in turn
is the complement of the WPM problem) is another confirmation of the algorithm’s
efficiency.

The proposed WPM algorithm was also included in a performance optimization
loop where it was calculating sets of range and statistical parameters at which the
circuit exhibits its worst performance. The obtained circuit’s WPM values satisfied
all design requirements resulting in a 99.65% yield.
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