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Abstract: This study proposes a gradient-free approach to integrated circuit sizing that takes into account the statistical variations
of device parameters and ranges of operating conditions. A novel gradient-free algorithm for solving the worst-case performance
problem is proposed. The proposed algorithm produces corners that are used in the optimisation loop of the circuit sizing process.
The set of corners is dynamically updated during circuit sizing. The number of corners is kept low by considering only corners
that are sufficiently unique. The final result is a circuit exhibiting the specified parametric yield. The proposed approach was tested
on several circuits and the results were verified with Monte–Carlo analysis and worst-case distances. All resulting circuits were
obtained in up to 12 h on a single processor and exhibited the specified yield. The method can easily be parallelised to an extent
that can bring the runtime of the method in the range of an hour or less.
1 Introduction

The importance of design automation in the area of integrated
circuit (IC) design is constantly increasing. The design
automation for analogue circuits is still not developed to the
extent it has reached in the area of digital circuits.
Therefore new methods are needed to remove the
bottleneck in the design of analogue and mixed signal
circuits. One of the essential tasks in this area is obtaining
IC designs with high parametric yield (in the remainder of
the paper also referred to as the yield), that is, designs that
result in a high percentage of manufactured circuits
satisfying all design requirements. Parametric yield does not
take into account catastrophic faults.

This paper considers circuit sizing, that is, it assumes that
the circuit topology is chosen in advance using designer’s
experience. By adjusting the design parameters of a
preselected topology one attempts to achieve a satisfactory
yield. The main cause for small yield are the random
variations of the electrical properties of identically designed
devices. The most problematic of these variations is the
mismatch [1–3].

Several analogue design automation approaches were
suggested in the past. Some of them dealt only with
nominal design and neglected the issue of yield [4, 5].
More advanced techniques also automated the design of
circuits with high yield [6–12]. Older approaches assumed
that statistical variations are applied to design parameters
only [6] which is not the case for ICs. Methods that use
response surface modelling (e.g. [8, 10]) suffer from model
accuracy problems. Often a linear model is used (e.g. [10])
which is inadequate for describing the behaviour of many
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important circuit properties (like mismatch-caused offset
voltage). Performance models are almost always local by
nature and cannot be used with global optimisation methods
without frequently rebuilding the model.

The prerequisite for a successful yield optimisation is a
reliable and accurate worst-case analysis, either in the form
of worst-case performance (e.g. [9]) or worst-case distance
(WCD) (e.g. [7, 10]). The main shortcoming of approaches
based on [7, 11, 12] is that the worst-case analysis must be
performed for every iteration of the yield optimisation
process. Owing to the complexity of the worst-case
analysis, this leaves little space for anything else but a local
optimisation method for sizing the circuit (usually a trust
region method with a linear model like in [11, 12]). Model-
based approaches do not analyse real circuits in the course
of optimisation and so the final optimisation result must be
verified with a circuit analysis to make sure it is correct.

The worst case can be obtained using global optimisation
methods (e.g. [9]). This approach is formally the most
correct one. Unfortunately, global optimisation is
computationally much more intensive than local
optimisation. The results published in [9] show that the
global approach produces a circuit with a relatively low
yield (around 50%). This circuit is then used as a good
starting point for a local yield optimisation approach like
the one found in [10]. Owing to the method that is used
simulated annealing (SA), [9] is a very time-consuming
solution.

Gradient-based local algorithms are often used for solving
the worst-case problem (e.g. [7, 11]) despite the fact that most
simulators are incapable of calculating sensitivities. Such
approaches require the numerical evaluation of performance
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gradients from circuit performances which are often subject to
a significant numerical error introduced by the simulator.
Results on real-world circuits (e.g. [11–13]) have shown
that a local worst-case evaluation method combined with
sizing rules [14] and a local yield optimisation algorithm
[15] produces good results despite the local nature of the
underlying optimisation algorithms. This was explained
with the fact that most circuit performances are only weakly
non-linear in regions where sizing rules are satisfied.

An approach that requires no gradients or costly global
methods for finding the worst-case performance is proposed
in this paper. Response surface modelling is not used by
the approach and so problems with model accuracy become
irrelevant. The algorithm for finding the worst-case
performance belongs to the family of direct search methods
[16]. The proposed algorithm for finding the worst-case
performance can be efficiently included in a yield
optimisation process in a way similar to the one used in [9].
The resulting yield optimisation approach is tested on
several IC cells and produces circuits with high yield
(99%). In the process of yield optimisation a local or a
global optimisation method can be used for sizing the circuit.

The remainder of the paper is structured as follows: Section
2 introduces the basic notions. Section 3 highlights the
relation between WCDs [7] and yield whereas Section 4
establishes the relation between yield and worst-case
performance. Sections 5 and 6 propose an approach to
worst-case performance evaluation and apply it to yield
optimisation. The proposed approach is evaluated on
several test problems and verified in Section 7. Section 8
concludes the paper.

Notation: If x is a vector, then its components are denoted by
xi. /(x, y) is the angle between vectors x and y. a . b denotes
the dot product of two vectors and [a, b] defines a new vector
composed of vectors a and b.

2 Circuit performance and yield

The performance of an analogue IC can be described as a set
of performance measures (e.g. current consumption, gain,
phase margin, delay, etc.). In real-world circuits, these
values depend on three kinds of parameters [17]: design
parameters (xD), range parameters (xR) and statistical
parameters (xS). A performance measure fi is actually a
function fi(xD, xR, xS). Let nD, nR and nS denote the
number of design, range and statistical parameters,
respectively.

The circuit’s performance is satisfactory if all its m
performance measures satisfy their respective design
requirements. A design requirement is of the form fi ≤ Fi or
fi ≥ Fi where Fi is the ith target value. For the sake of
simplicity only fi ≥ Fi is considered. fi ≤ Fi can be
transformed into fi ≥ Fi by replacing fi and Fi with−fi and−Fi.

Range parameter values come from a bounded set R which
can be expressed as xR [ R. Some of the most common
range parameters that describe the operating conditions of a
circuit are temperature, supply voltage, bias current, etc.
Usually R is a cross-product of nR intervals where lower-
and upper-interval bounds are specified by components of
vectors L and H, respectively. Every interval corresponds to
one range parameter. Nominal range parameter values are
denoted by xN

R.
Statistical parameters (xS) model the variations of the

manufacturing process. They are usually described by a
joint probability distribution function (JPDF) and generally
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come from a set that is not bounded. A very common JPDF
is the multivariate normal distribution

p(xS) = 1����
2p

√( )nS
������
det C

√ exp
−b2(xS)

2

( )
(1)

where b2(xS) = (xS − xN
S )TC−1(xS − xN

S ), xN
S is the vector of

mean statistical parameter values (also referred to as the
nominal statistical parameters) and C denotes the covariance
matrix. If the JPDF describing xS is continuous but not
normal, it can be made normal by applying an appropriate
transformation to xS. For modern ICs this transformation
depends on the design parameters xD. One can always
transform such JPDFs into a normal distribution with
xN

S = 0 and C ¼ I where I is the identity matrix. Therefore
without loss of generality the latter distribution is assumed
throughout the remainder of this paper. A yield partition is
defined as

Yi(xD) =
∫

xS[RnS

p(xS)hi(xD, xS) dxS (2)

where hi(xD, xS) is the indicator function of the ith
performance measure (i.e. it is 1 if fi(xD, xR, xS) ≥ Fi for
all xR [ R and 0 otherwise). The total yield Y (xD) can be
defined in a similar way as (2) except that hi(xD, xS) is
replaced by

∏m
i=1 hi(xD, xS). The job of a circuit designer is

to choose the design parameters (xD) in such manner that
the circuit’s total yield will be as large as possible.

3 Yield estimation and WCDs

The absolute value of the WCD bWCD
i (xD) is defined as the

shortest distance between the origin (xN
S ) and the contour C

defined as minxR[R fi(xD, xR, xS) = Fi [7]. C represents the
boundary of the acceptance region corresponding to Yi
(shaded in dark grey in Fig. 1) which is the part of the
space of statistical parameters for which the indicator
function hi(xD, xS) is equal to 1. The WCD is positive if
minxR[R fi(xD, xR, xN

S ) ≥ Fi holds and negative otherwise.
If the acceptance region boundary is approximated with a

halfspace tangent to C at the point closest to the origin, the
yield partition suffers an error (acceptance region
approximation error) denoted by the hashed region in

Fig. 1 WCD problem illustrated for two statistical parameters

Contours of minxR[R fi(xD, xR, xS) for a fixed set of design parameters xD are

depicted by solid curves. The acceptance region of fi is shaded in dark grey
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Fig. 1. This error proves to be reasonably small in IC design
[17]. A yield partition can be approximated as [17]

Yi(xD) ≃ Q(bWCD
i (xD)) = 1

2
1 + erf

bWCD
i (xD)��

2
√

( )( )
(3)

As all yield partitions Yi approach 1 the total yield Y also
approaches 1. The yield can therefore be maximised by
maximising the smallest yield partition which is equivalent
to maximising the smallest WCD. Maximisation of WCDs
pushes the boundaries of the acceptance region away from
the origin. Owing to the nature of the underlying
optimisation problem, the computation of WCD requires a
gradient-based modified SQP (sequential quadratic
programming) algorithm [7, 17, 18].

4 Worst-case performance and its relation
to yield

Instead of maximising the smallest WCD, let us require that
WCDs be greater than some bWPM . 0. This is equivalent
to requiring that the worst performance inside the sphere
b ≤ bWPM satisfies the design requirements. To optimise
the yield by improving worst performance measures
(WPMs) an algorithm for calculating the worst-case
performance is needed. Finding the WPM is a much
simpler problem than the computation of the WCD. The
WPM problem can be stated as

f WPM
i = min

xR[R,b≤bWPM
fi(xD, xR, xS) (4)

Ensuring that the worst-case performance inside the sphere
b ≤ bWPM satisfies the design requirements is equivalent to
ensuring that the WCD is greater than bWPM. This implies
(within acceptance region approximation error) that the
yield partition satisfies

Yi(xD) ≥ Q(bWPM) (5)

Two examples of the WPM problem are shown in Fig. 2
where the two WPM solutions f W

i and f W′

i are obtained

using bWPM and bWPM′
. By setting bWPM = 3 the yield

partitions are required to satisfy Yi ≥ 0.9987.

Fig. 2 Two WPM problems, one for bi
WPM , bi

WCD and one for
bi

WPM ′
. bi

WCD

Solution ( fi
W and fi

W′
, respectively) is denoted by a dot. The two solutions

satisfy fi
W . Fi . fi

W′
. See Fig. 1 for the explanation of contours and shading
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5 Solving the worst-case performance
problem

Because all constraints in the WPM problem are simple (e.g.
box constraints on the range parameters and a spherical
constraint on the statistical parameters), it can be solved by
adapting an unconstrained direct search method to the
nature of these constraints. The proposed algorithm draws
its inspiration from the Hooke–Jeeves method [19]. The
method uses two types of steps. Trial steps search for a
lower value of the function f in the neighbourhood of the
current point. If a better point is found, the second part
performs a speculative step which is supposed to speed up
the search. The size of this step is determined by the a
parameter.

The search steps in the space of range parameters are
identical to Hooke–Jeeves steps, whereas the search steps
in the space of statistical parameters are rotations and radial
steps. This makes sure that the steps conform to the
boundary of the search space. The step acceptance criterion
in the space of statistical parameters requires sufficient
descent (i.e. a sufficiently large decrease of the function
that is subject to minimisation) [20].

Let S1 and S2 denote the space of statistical and range
parameters, respectively. The WPM problem for finding the
set of statistical and range parameters at which worst-case
performance occurs can be stated mathematically as

min
x[RnS+nR

f (x) subject to (6)

‖xS‖ ≤ b, b . 0 (7)

Li ≤ xRi ≤ Hi, i = 1, . . . , nR (8)

For x [ S1 × S2 vectors xS and xR represent the components
of x corresponding to S1 and S2, respectively. Vector x can be
written as [xS, xR] where xS and xR are vectors with nS and nR
components, respectively.

Basis vectors for S1 and S2 are denoted by ei and bi,
respectively. All basis vectors are mutually orthogonal with
unit length (‖ei‖ = 1, ‖bi‖ = 1). Every basis vector
corresponds to one statistical or one range parameter. Fig. 3
depicts rotations (w) and radial steps (R) in S1 and
coordinate steps (F) in S2. Rotations enable the algorithm
to move on the surface of a hypersphere defined by ‖xS‖ ≤ b

x′S = rotate(xS, e, w)

=
xS cosw+ e′

‖e′‖ ‖xS‖ sinw

xS and e linearly independent

xS; otherwise

⎧⎪⎪⎨
⎪⎪⎩ (9)

Fig. 3 Rotations and radial steps at two points in subspace S1

(left), coordinate steps at two points in subspace S2 (right)
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where e′ is obtained as

e′ = e − e · xS

‖xS‖2 xS (10)

Radial steps move between hyperspheres in S1 with different
radii

x∗S = radial(xS, R, bmin)

=
xS +

xS

‖xS‖
R; ‖xS +

xS

‖xS‖
R‖ ≥ bmin

− xS

‖xS‖
bmin; otherwise

⎧⎪⎨
⎪⎩ (11)

The introduction of bmin prevents ‖xS‖ from becoming
0. Radial steps that result in a point inside the hypersphere
with radius bmin are modified so that the resulting point lies
on the surface of this hypersphere.

The following definitions simplify the description of the
algorithm. The step size is defined as

Di =
w; 1 ≤ i ≤ nS

R; i = nS + 1
F(Hi−(nS+1) − Li−(nS+1)); otherwise

⎧⎨
⎩ (12)

where w, R and F denote the size of the rotational, radial and
coordinate steps, respectively. i denotes the index assigned to
an individual step.

A rotational step is successful if it produces sufficient
descent (g). Successful radial steps and successful
coordinate steps must produce simple descent (i.e.
f (xtemp) , f T). di denotes the amount of descent that is
sufficient for ith step to be considered successful.

di =
g ; 1 ≤ i ≤ nS

0 ; nS + 1 ≤ i ≤ nS + nR + 1

{
(13)

The actual steps (P (x, D, i)) are defined as

P(x, D, i)

=
[rotate(xS, ei, D), xR]; 1 ≤ i ≤ nS

[radial(xS, D, bmin), xR]; i = nS + 1

[xS, xR + Dbi−(nS+1)]; nS + 1 , i ≤ nS + nR + 1

⎧⎪⎨
⎪⎩

(14)

Constraints (7) and (8) can be violated by certain steps. For
this purpose, a vector-valued function V(x) is defined
which moves a point in such a manner that the constraints
are satisfied again.

V(x) = VS(xS),
∑nR

i=1

(VR(xRi, Li, Hi)b
i)

[ ]
(15)

VS(xS) =
xS; ‖xS‖ ≤ b
xS

‖xS‖
b; ‖xS‖ . b

⎧⎨
⎩ (16)
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Fig. 4 WPM algorithm
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VR(x, L, H) =
x; L ≤ x ≤ H
L; x , L
H ; x . H

⎧⎨
⎩ (17)

Let x0 denote the initial point. The proposed algorithm for
solving the WPM problem can now be represented by Fig. 4.

The upper index of x represents different points that are
calculated by the algorithm. xT and xB represent the trial
point and the best point while the corresponding values of f
are denoted by f T and f B, respectively. The point produced
by the speculative step is denoted by xSP. The lower index
of vector x denotes the sub-vector of statistical parameters
(xS) and range parameters (xR). If there is no lower index,
then vector x represents a point from S1 × S2 and can be
written as [xS, xR]. a specifies the scaling factor for the
length of the speculative step. r and d are used for changing
the step size and the amount of sufficient descent.

If nS = 0 (or nR = 0), the sequence of indices traversed by
the for statement is 2, 3, . . . , nR + 1 (or 1, 2, . . . , nS, nS + 1).
For nR = 0 the condition in the ‘if’ statement that triggers the
‘break’ changes from i = nS + 2 to i ¼ 1.

The implementation used the following initial parameter
values: w ¼ p/4, R ¼ b/2, F ¼ 1/8, bmin = b/3, r ¼ 6,
a ¼ 2 and d ¼ 2. The algorithm was stopped when
F , 1/72. This combination of parameters was obtained
with numerical trials. The proposed values may not be the
ultimate best choice but nevertheless resulted in satisfactory
performance of the proposed algorithm.

For the initial range parameter values (x0
R) the performance

was measured at Li and Hi for every range parameter while
other components of xR remained nominal and xS was set
to xN

S . Based on the results, extreme range parameter values
were combined into vector xA

R where the worst performance
was expected. Finally, the WPM algorithm was run with
nS = 0 and x0 = xA

R resulting in x0
R.

For obtaining x0
S and g the xR was set to x0

R and the
performance was evaluated at xSi = +b in a similar manner
as it was done before with range parameters. The results
( f +i and f −i) are used for calculating the gradient ∇S f at

xN
S via central difference approximation. Let f max and f min

represent the largest and the smallest value of f across all
f +i. g and x0

S are then obtained as ( f max − f min)/10 and
−b∇S f /‖∇S f ‖, respectively.

Despite the fact that the algorithm is local, it is expected to
be adequate because the modified SQP approach to the WCD
problem in [7, 17] is also local but still produces good results
on real-world IC designs.

6 Direct search yield optimisation

A corner c is defined as a two-tuple (xR, xS). Let cN denote
the nominal corner (xN

R, xN
S ). The set of corners

corresponding to fi is denoted as Ci. Let x0
D denote the

initial design parameters. The yield optimisation algorithm
can now be represented as Fig. 5.

The optimisation (step A) starts with initial point xD. The
cost function for optimisation is constructed in such a
manner that if measure fi fails to satisfy fi ≥ Fi in any of
the corners from Ci, a penalty proportional to the violation
is added to the cost function [21]. The optimisation stops
when the cost function reaches 0 (i.e. when all design
requirements are fulfilled across all corresponding corners).

After the optimisation is finished, the obtained design (xD)
is checked for new corners (i.e. the worst-case performance
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 37–45
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f W
i at xD is calculated for all performance measures using

the proposed WPM algorithm). This results in m new
corners cnew

i . If f W
i fails to satisfy f W

i ≥ Fi the
corresponding new corner cnew

i is added to the set of
corners Ci. If there exists a c [ Ci such that c ≃ cnew

i then c
is removed from Ci before cnew

i is added.
Two corners (c1 = (x1

R, x1
S) and c2 = (x2

R, x2
S)) are

approximately equal (c1 ≃ c2) if all of the following holds

/(x1
S, x2

S) ≤ 158 (18)

|‖x1
S‖ − ‖x2

S‖| ≤ 0.25 max(‖x1
S‖, ‖x2

S‖) (19)

|x1
Ri − x2

Ri| ≤ 0.1 max(|x1
Ri|, |x2

Ri|) (20)

The last inequality must hold for all i = 1, . . . , nR. The
algorithm gradually builds the set of corners corresponding
to individual performance measures. It is finished when the
worst-case performance satisfies all design requirements. At
that point, final yield partitions satisfy (5).

The WPM algorithm requires no derivatives for its
operation. If a direct search optimisation algorithm is used
in step A the yield optimisation algorithm does not require
the evaluation of derivatives.

7 Examples

The proposed WPM-based yield optimisation approach was
demonstrated on four different IC cells: an operational
amplifier (OPAMP) [22], a bandgap reference circuit
(BGR) [23], a beta multiplier reference (BMR) [22] and a
comparator (COMPAR) [22]. The target yield was 99.87%
(bWPM = 3).

Two range parameters were common to all four circuits:
temperature (220–808C) and supply voltage (1.6–2.0 V).
The OPAMP had an additional range parameter (bias
current) ranging from 80 to 120 mA.

Fig. 5 Yield optimisation algorithm
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Four parameters of every MOS transistor were affected by
mismatch: threshold voltage, channel width reduction,
channel length reduction and oxide thickness. The vector of
these parameters for all transistors in a circuit is denoted by
p and can be expressed as

p = mp + Ap(W , L)xS (21)

where mp is a vector of mean parameter values while matrix
Ap(W , L) represents the mismatch model. Note that mp is
constant while Ap depends on the transistor channel widths
and lengths. The details of the mismatch model are
proprietary and cannot be published. xS denotes the vector
of statistical parameters which in turn are uncorrelated
normal random variables with zero mean and standard
deviation 1.

The WPM algorithm and the yield optimisation were
implemented using Python [24] and NumPy [25]. All
circuits were simulated with the SPICE OPUS simulator
[26] and a 0.18 mm technology model. The nominal values
of all statistical parameters were 0.

The first tested circuit is the BMR circuit in Fig. 6. This is a
current source that pushes the current (IREF) through resistor
R. This current is fairly stable with respect to temperature
and supply voltage variations. One can mirror the reference
current using gate voltages VBIASP and VBIASN. This circuit
has nine design parameters (nD = 9): the resistance of R
and the length and the width of all MOS transistors
excluding the start-up circuit (MSU1, MSU2 and MSU3).
Several transistors must have matching channel dimensions
(i.e. M1 and M2, M3 and M4, MA1 and MA2 and MA3 and
MA4) and so MOS transistors contribute only eight design
parameters instead of 16.

During the optimisation, two range parameters (nR = 2)
and 32 statistical parameters (nS = 32) were considered.
The range parameters were the temperature (220–808C)
and the supply voltage (1.6–2.0 V). The nominal values of
range parameters were 278C and 1.8 V, respectively. The 32
statistical parameters were contributed by transistors
M1 − M4 and MA1 − MA4.

In this circuit three circuit performances were considered.
The first two were DIREF/DVDD and DIREF/DT that
reflected the maximal output current variation with respect
to supply voltage and temperature variations, respectively.
The third measure was the value of the reference current
that flows through resistance R. The goals for
these measures were DIREF/DVDD , 10 nA/V,
DIREF/DT , 45 nA/8C and 15mA , IREF , 30mA. To
speed up the optimisation, some additional performance

Fig. 6 Beta-multiplier reference
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measures were considered for transistors M1 − M4 and
MA1 − MA4. The goals for these measures were
Vds − Vth . 0 and Vds − Vdsat . 0. In [14], such measures
are referred to as sizing rules. The sizing rules were not
subject to WPM analysis and yield optimisation.

The remaining three examples are set up in a way similar to
the BMR. The OPAMP is depicted in Fig. 7. It has 32
statistical (four for every transistor with the exception of
MN1S and MP1S) and three range parameters. The bandgap
reference circuit on Fig. 8 is designed for low-power
CMOS and is based on resistive subdivision. It has 40
statistical parameters. Transistors M4, M5 and M6 comprise
the start up circuit and contribute no statistical parameters.
In the COMPAR circuit (Fig. 9), variations of statistical
parameters cause a significant increase of hysteresis. The

Fig. 7 Operational amplifier

Fig. 8 Bandgap reference

Fig. 9 Comparator
IET Circuits Devices Syst., 2011, Vol. 5, Iss. 1, pp. 37–45
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BMR circuit (see Fig. 6) was used as a source of reference
current for the COMPAR. The complete COMPAR has 108
statistical parameters (32 because of the BMR and 76
because of the COMPAR).

The initial set of design parameters x0
D for every circuit

was obtained with the parallel simulated annealing with
differential evolution (PSADE) global optimisation method
by considering only the nominal corner. PSADE is a
parallel version of the DESA global optimisation algorithm
[27], which performs well on various mathematical and IC
optimisation problems. The initial point for all four circuits
was obtained in a few minutes on a parallel computer
system of five 3 GHz dual-core computers. The initial point
obtained with such a global method is a good starting point
for the direct search yield optimisation algorithm presented
in the previous section.

Modified Box simplex algorithm [28] was used for the
optimisation in step A. We used this local optimisation
method because experiments have shown that with a good
starting point (one that satisfies the design requirements in
the nominal corner) it produces results that are as good as
those obtained with the PSADE algorithm, except that the
Box simplex algorithm is faster. The results of yield
optimisation are listed in Tables 1–4. The first three
columns of Table 1 list the name, the type and the goal (Fi)
of the performance measures, respectively. The fourth, the
fifth and the sixth column list the initial performances in the
nominal corner ( f N

INI), the initial worst-case performances

Table 1 Results of the yield optimisation algorithm

Performance name Type Fi f N
INI f WPM

INI f WPM
OPT

BMR
DIREF

DT
, nA/8C

, 45 45 46 45

DIREF

DVDD

, nA/V , 10 0.2 0.7 9.8

OPAMP

slew rate rise, V/ms . 4.0 6.9 3.9 4.2

slew rate fall, V/ms . 4.0 12.3 4.2 17

settling time rise, ms , 1.0 0.3 0.4 0.4

settling time fall, ms , 1.0 0.1 0.3 0.07

rise time, ns , 250 137 207 190

fall time, ns , 250 98 215 49

overshoot, % , 10 0.18 2.7 5.4

undershoot, % , 10 0.01 0.02 0.01

swing 50% gain, V . 1.0 1.2 0.95 1.1

phase margin, deg . 55 57 54 68

unity gain BW, MHz . 8.0 20 15 14

gain at 0 Hz, dB . 60 82 74 79

out offset (upper), mV , 4 0 5.5 3.7

out offset (lower), mV . 24 0 25.5 3.7

BGR
DVREF

DT
,mV/8C

, 50 18 70 37

DVREF

DVDD

, mV/V
, 5 4.4 17 4.1

COMPAR

output rise time, ns , 2 1.1 1.4 0.7

output fall time, ns , 2 0.7 1.1 1.2

output rise delay, ns , 15 6.8 19 13

output fall delay, ns , 15 8.0 15 9

hysteresis, mV , 4.0 3.2 37 3.4
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( f WPM
INI ) and the worst-case performances obtained after

yield optimisation ( f WPM
OPT ). From the table it is clear that all

worst-case performance measures of all four circuits have
satisfied the respective goals after yield optimisation.
Therefore all yield partitions of all circuits should be above
99.87%.

The final results were verified by Monte–Carlo (MC)
analysis of 10 000 random samples in the space of
statistical parameters. For every sample, a WPM analysis
with nS = 0 was performed resulting in worst-case
performances over range parameters for the given set of
statistical parameters. The WPM analysis results were used
to obtain the actual yield partitions (Yi) (last column of
Table 2). The WCDs for the final results were also
computed and are listed in the second column of Table 2.
The table lists only those circuit performance measures for
which the WCD is below six. It can be seen that no WCD
was below three which once again confirms the final yield

Table 2 WCD and yield partitions

Performance name WCD Yi, %

BMR

DIREF

DT
, nA/8C

3.01 99.85

DIREF

DVDD

, nA/V
3.03 99.87

OPAMP

slew rate rise, V/ms 5.03 100

out offset (upper), mV 3.15 99.91

out offset (lower), mV 3.15 99.94

BGR
DVREF

DT
, mV/8C

4.49 100

DVREF

DVDD

, mV/V
3.75 99.99

COMPAR

hysteresis, mV 3.42 99.94

Table 3 Number of optimisation parameters

Circuit nS nR nD

BMR 32 2 9

OPAMP 32 3 10

BGR 40 2 13

COMPAR 108 2 31

Table 4 Comparison of the proposed algorithm and the

algorithm from [9]

Circuit Proposed algorithm SA algorithm

Y, % nsim T, h Y, % nsim T, h

BMR 99.73 25 735 1.0 96.24 34 917 1.9

OPAMP 99.85 31 682 1.2 84.63 232 054 12.0

BGR 99.99 7867 1.6 95.57 61 113 13.5

COMPAR 99.94 72 772 8.4 87.12 79 209 11.4
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partitions. The yield partition corresponding to beta-
multiplier temperature dependence (99.85%) was slightly
lower than the target yield (99.87%). This can be attributed
to the fact that the circuit optimisation algorithm was
stopped as soon as all worst-case performances satisfied
their respective goals. Owing to the numerical errors caused
by the simulator, some of them were slightly below the
goal resulting in a slightly lower yield partition than expected.

Table 3 lists the number of optimisation variables
considered in the yield optimisation process and in the
proposed WPM algorithm. The number of optimisation
variables in the yield optimisation process is equal to the
number of design parameters (nD). On the other hand, the
number of optimisation variables in the proposed WPM
algorithm is equal to the sum of the number of range and
statistical parameters (nR + nS).

The yield optimisation was not parallelised and was
executed on a single 3 GHz Intel processor. One analysis in
one corner was considered as one circuit simulation. For
every set of design parameters examined by the optimiser, a
performance measure contributed as many simulations as
there were corners in its corresponding Ci. With this in
mind, the cost evaluation can be parallelised to great extent.
For example, in a problem with five analyses where every
analysis must be performed across three corners, a total of
15 simulations is needed. If this problem is run on a
parallel system of 15 or more processors, then the time
needed for performing 15 simulations is equal to the time
of the longest simulation and some additional time arising
from communication overhead. In the same way, the WPM
evaluations of individual performances can also be run in
parallel for all measures at once. This has the potential of
speeding up the algorithm proportionally to the number of
performance measures.

The comparison of the proposed algorithm with the
approach presented in [9] is shown in Table 4. The main
difference between the two approaches is in the calculations
of the WPM. In our approach, the algorithm presented in
Section 5 is used, while [9] uses SA. The starting point and
the initial circuit optimisation in the nominal corner were
identical for both cases.

The second and fifth columns in Table 4 list the final yield
obtained with the proposed method and the method presented
in [9]. The final yields were obtained in the same manner as
the yield partitions in Table 2 (10 000 sample MC
analysis). The final yield of the circuits obtained with the
proposed approach is close to the desired yield (99.87%).
On the other hand the circuits obtained with the approach
from [9] (with the exception of the BGR and BMR) exhibit
a significantly lower yield. For these circuits a further yield
optimisation step (e.g. using the LPP method [10], as noted
in [9]) is required to reach the desired yield.

We tried to tighten the stopping criterion of SA in the hope
of obtaining final yields that would be closer to the desired
yield. The result was an improvement of the final yields
(which unfortunately were still lower than the desired
yield), but the algorithm runtimes increased by an order of
magnitude.

The proposed method is also faster than [9], both in terms
of the number of simulations (nsim) as in terms of runtime (T ).
The average runtime of the algorithm per simulation is longer
for SA than for the proposed algorithm. This can be attributed
to the fact that because of its random nature the SA used in [9]
generates a large number of circuits with extremely bad
performance. Such circuits usually result in long transient
analysis runtimes.
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8 Conclusion

An approach to circuit sizing that takes yield into account was
proposed. The approach is direct search based and does not
require the evaluation of derivatives (sensitivities). It utilises
a novel direct search approach for worst-case performance
evaluation and a standard direct search optimisation
algorithm (Box simplex algorithm) for circuit sizing.
Algorithm runs on four examples of IC cell design have
shown that the desired yield (i.e. 99.87%) can be achieved
in hours on a single processor. The final yield was verified
by simulating 10 000 MC samples and evaluating the final
design’s WCDs. Both tests confirmed the results. The
algorithm can easily be parallelised. The expected maximal
speed up is proportional to the number of performance
measures subject to optimisation.
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