
Elektrotehniški vestnik 68(1): xxx-xxx, 2001
Electrotechnical Review, Ljubljana, Slovenija

Integration of Generic Optimisation Algorithms in SPICE

Janez Puhan, Iztok Fajfar, Tadej Tuma and Arpad Bűrmen
University of Ljubljana, Faculty of Electrical Engineering,
Tržaška cesta 25, 1000 Ljubljana, Slovenia
e-mail: janez.puhan@fe.uni-lj.si

Abstract. Though rather awkward and limited in its usage, SPICE has been used by several authors
solving their various optimisation problems. In this paper we propose how some generic optimisation
algorithms can be integrated into SPICE. The implemented program has proven to be an extremely
efficient optimisation tool for an experienced circuit designer. It is free of charge available at our web
site (http://fides.fe.uni-lj.si/spice/).

Keywords: SPICE, Nutmeg, optimisation, circuit simulation

Vgradnja generičnih optimizacijskih algoritmov v SPICE

Povzetek. Čeprav so nekateri avtorji že uporabljali
SPICE za reševanje različnih optimizacijskih
problemov, je njegova uporaba v optimizacijskih
postopkih še vedno nerodna in omejena. V članku je
predstavljen način integracije nekaterih splošno znanih
optimizacijskih algoritmov v SPICE. Program se je
izkazal za izredno učinkovito optimizacijsko orodje v
rokah izkušenega načrtovalca električnih vezij. Na voljo
je brezplačno na naši spletni strani (http://fides.fe.uni-
lj.si/spice/).

Ključne besede: SPICE, Nutmeg, optimizacija,
simulacija vezij

1 Introduction
Among the numerous digital programs aiding in circuit
design, SPICE, that was originally developed at the
University of California, Berkeley, is undoubtedly the one
that is most widely used by circuit designers.
Optimisation is one of the important aspects of circuit
design that neither SPICE nor any other circuit design
software by itself can support adequately. It is by no
means an easy and straightforward task. It requires a great
deal of understanding of the circuit to be optimised for
which no cookbook recipe is available. There exist many
generic optimisation algorithms performing differently,
depending upon the problem in question, the way
optimisation criteria are constructed in a form of objective
function, or the choice of initial parameter values, to
name just few of them. But even an experienced circuit

Received xxx
Accepted xxx

designer, well understanding the problem, cannot attack
the optimisation problem efficiently by using the flavours
of SPICE alone.
Although many cases of using SPICE in the optimisation
process have been reported, SPICE has mostly been used
as a verification tool checking whether the optimised
circuit performs as anticipated [e.g. Wei L (1999)].
Efforts have been taken of linking SPICE to some other
software to automate the optimisation process (e.g. SPICE
and Matlab [Siu K W (1995)], or SPICE and Mathematica
[Puhan J (1997)]). These approaches, however, proved to
be both slow (problem of communication between two
separate applications) and difficult to use (the designer
has to cope with different applications and languages).
Our aim was to integrate into SPICE some sort of generic
optimisation so that both would yield adequate processing
speed and be easy for use by circuit designers. The result
of the project was a tool implemented as a new Nutmeg
command (Nutmeg is an interactive interpreter language
used for controlling certain aspects of the circuit
simulation process in SPICE). It incorporates 11 different
well-known optimisation algorithms. Apart from selecting
an algorithm, the tool allows the user to specify almost
arbitrary the cost function for which minimal coding is
required.
One of our most serious problems were the numerous
memory leaks and some other bugs found in the original
Berkeley code. Since all the today available variations of
SPICE depend on that code, they also suffer from the
same memory leaks and bugs. Although the bugs are
mostly harmless with regard to ordinary circuit
simulations, they are a serious problem during an
optimisation process where several hundreds of circuit
analyses must be carried out in a loop.
Consider, for example, the following simple loop written
in Nutmeg:

while 1
 rusage
end

The rusage command in infinite, whereas the loop
reports the system memory usage which increases
constantly although there is no explicit command in the
code that consumes memory. We found no version of
SPICE to run that loop without eventually occupying all
the system memory and crashing the program. Therefore,
our first step was the painstaking task of finding and
fixing those bugs.

2 Practical Implementation
After fixing the bugs and before coding the optimisation
algorithms, we had to decide how the algorithms would
be integrated into SPICE. Several approaches have been
proposed and tested [Puhan J (1997)]. We finally chose
the one which offered both the fastest speed and a simple
to use interface.
The optimisation was integrated into the existing SPICE
front-end as depicted schematically in Fig 1. From the
user point of view, the optimisation is performed through
a single Nutmeg command called optimize. Originally,
parser parses all the Nutmeg commands and calls
appropriate functions that are either executed inside the
front-end or act as an interface to the simulator. The
optimize command is not parsed by the parser but rather
passed on to the optimisation part of the program. This
part implements the general optimisation loop, which,
when necessary, calls internal front-end functions in order
to perform circuit analyses and other control commands.
The structure of that general optimisation loop is always
the same. The algorithm is as follows:

do
change parameter values
satisfy explicit constraints
if implicit constraints satisfied
then
perform required analyses
calculate cost function

endif
while termination criteria not
satisfied

The selection of a certain optimisation algorithm affects
only the way in which the parameter values are changed
in the first line within the above do...while statement.
The great advantage of this approach is the fact that it is
not necessary to run the simulator separately for each
analysis thus speeding up the optimisation significantly.
One could, of course, code the optimisation loop directly
in Nutmeg but such approach would be quite awkward
since Nutmeg is not a very flexible programming
language.
The optimisation algorithms themselves are hard coded in
the C language separately from the SPICE code although
their coding demanded detailed knowledge of internal
functioning of SPICE (e.g. data structures and internal
structure of the Nutmeg interpreting language).

3 The Algorithms

After the implementation technique had been decided
upon, our next step was to implement some most widely
known generic optimisation algorithms. We implemented
11 of them:

1. Steepest descent*
2. Newton's method*
3. Davidon-Fletcher-Powell's method*
4. Monte Carlo method*
5. Grid search method
6. Search along co-ordinate axes*
7. Powell's method*
8. Hooke-Jeeve's method
9. Constrained simplex method
10. Simple genetic algorithm
11. Brute force method (evaluation of cost function

across the whole parameter space)

For finding a minimum along a selected direction,
algorithms marked with asterisk use quadratic approach,
golden section search, or Fibonacci search.
It is very convenient for the designer to have many
different optimisation algorithms available. Especially in
hard optimisation problems, different methods can yield
quite different minima. Given the additional possibility to
easily change certain parameters of algorithms, the
designer has a powerful tool that can significantly shorten
the design time and possibly yield more optimal solutions.

4 An Example
In order to demonstrate the use of our optimize command,
we look at a simple Schmitt trigger depicted in Fig 2. Our
objective is to find values of resistors R2 and R3 such that
switching will take place at voltages of 3V (up) and 2V
(down). The high and low level output voltages should
differ for at least 10V.
Before starting to optimise the circuit we need to set up
necessary constraints and the cost function. Two explicit
constraints on the two resistors are derived empirically.
The chosen ones are those at which the switching voltage
is anywhere within the power supply voltage range:

(1)

The implicit constraint ensures the required difference in
output voltages:

(2)

Finally, the cost function deals with switching voltages:

(3)

Here, the Boolean operator greater than (>) returns 1 or 0,
depending on whether the left hand side of the operator is
or is not greater than its right hand side, while v5ideal is a
normalised ideal output response.
Now, using the optimize command, the above problem
can be formulated in a few lines of the Nutmeg code:

* parameters, explicit constraints, and initial
* point:
optimize parameter 0 element r2 parameter
+ resistance low 10k high 30k initial 12k

Ω≤≤Ω
Ω≤≤Ω

kRk

kRk

501

3010

3

2

VRRvRRv 10),(),(32min532max5 >−

dtv
vv

vE
T

ideal∫ −





 +>=

0

5
min5max5

5 2

optimize parameter 1 element r3 parameter
+ resistance low 1k high 50k initial 8k
* implicit constraint:
optimize implicit 0 v(5)[5500] - v(5)[0] gt 10
* analyses performed in each iteration:
optimize analysis 0 tran 1ms 11s
optimize analysis 1 linearize
* specify cost function (v(5)[5500] = v(5)max):
let ideal = (vector(11001) gt 2999) and
+ (vector(11001) lt 9001)
optimize cost mean(abs((v(5) gt
+ (v(5)[5500] + v(5)[0]) / 2) - ideal))
* use constrained simplex method with default
* parameters:
optimize method complex
* run optimisation algorithm:
optimize

Running this code we arrive at the global minimum of the
cost function at R2 = 18kΩ and R3 = 20kΩ.

5 Conclusions
We have integrated eleven well-known optimisation
methods into SPICE. Their usage is, of course, not trivial
and requires a certain level of proficiency and expertise in
optimisation. Nevertheless, the implemented optimisation
tool proved to be easy to use by experts. They can, with
minimal coding, quickly arrive to desired results, even
when different optimisation methods need to be
combined, e.g. a genetic algorithm applied so as to find
suitable initial points for some gradient algorithm.
More examples, executable code running under Windows
95/98/NT and Linux, and further information about the
developed software are available free of charge at our
web site (http://fides.fe.uni-lj.si/spice/).

6 References
[1] Puhan J and Tuma T (1997) Optimisation of

analog circuits with SPICE 3f4. Proc. European
Conference on Circuit Theory and Design.
Budapest. 1: 177-180

[2] Siu K W and Lee Y S (1995) MATSPICE -
putting circuit simulation and design
optimisation together. Proc. European
Conference on Circuit Theory and Design.
Istanbul. 2: 1161-1164

[3] Wei L, Chen Z, Roy K, Johnson M C, Ye Y and
De V K (1999) Design and optimisation of dual-
threshold circuits for low-voltage low-power
applications. IEEE Trans. Very Large Scale
Integration (VLSI) Systems. 7: 16-24

Janez Puhan graduated from the Faculty of Electrical
Engineering, University of Ljubljana, Slovenia in 1993,
where he also obtained his M.Sc. degree in 1998. His
current research interests are in computer aided design of
analog circuits, optimisation methods and computer
circuit analysis.

Iztok Fajfar received the Dipl. Ing., M.Sc. and Ph.D.
degrees in electrical engineering from the Faculty of
Electrical Engineering, University of Ljubljana, in 1991,
1994 and 1997, respectively. Since 1992 he has been with
the same faculty he is currently an assistant professor. His
research interests include design and optimisation of
electronic circuits with focus on cellular neural networks.

Tadej Tuma received his diploma degree from the
Faculty of Electrical Engineering, University of Ljubljana
in 1988. Soon thereafter he joined the same faculty as a
teaching assistant. At the same time he began his
postgraduate studies, which were completed with his
M.Sc. thesis in 1991 and his Ph.D. dissertation in 1995.
His research interest is mainly in the field of computer
aided circuit design, especially in analog circuit
optimisation methods.

Arpad Bűrmen received the B.Sc. degree in 1999. He is
currently a junior researcher at the Faculty of Electrical
Engineering of the University of Ljubljana. He teaches
laboratory practice for undergraduate courses in computer
basics and programming. His research interests include
analog and mixed-mode simulation, and modelling and
optimisation of circuits and systems.

List of Figures
Fig 1 Integration of the optimisation code into SPICE front-end

Fig 2 Simple Schmitt trigger circuit

Simulator

Frontend

Parser Optimisation

Function 1

Function 2

Function n

. . .

Optimize Command

Other Nutmeg Commands

v(1)
input

r1 10k1 2

v(5)
output

3

5

4

6

r2

r4
1k

v0
24V

q2
2n2222

+

+

q1
2n2222

r3

3V2V

> 10V

v (v):

v1
pulse

5ideal 1

tT0

1v (t)

