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Abstract

The paper is an overview of MOS transistor mismatch modeling and simulation over the ex-
istent literature. The fluctuations of physical parameters and line width are the main causes of
mismatch. There are two types of mismatch. Systematic mismatch can be reduced to great
extent with proper layout. Different patterns are available, that are able to reduce from linear
to n-th order polynomial systematic mismatch. Stochastic mismatch can only be reduced with
better process control and larger transistor areas. There are different approaches for calculating
the standard deviation representing stochastic mismatch. Simple formulas (e.g. square root of
area rule) are most commonly used. With the reducing of the transistor area some new effects
should be considerate and more complex formulas are needed. On the other hand correlation
functions and frequency domain analysis with spatial spectra give more accurate results. These
two approaches are more general but they do not give physical insight and the final layout
should be known. Mismatch can be simulated in several ways. Brute force simulation based
on Monte-Carlo analysis is appropriate for any kind of distribution but it is the most time ex-
pensive. Simulations based on small signal analysis are faster because less circuit simulations
are needed to calculate the sensitivity. Two different approaches to calculate the sensitivity are
presented in this paper.

Keywords: MOS transistor mismatch, simulation, modeling

Presenting Author’s Biography
Gregor Cijan. Received the uni. dip. ing. degree in electrical engineering
from the University of Ljubljana in 2006. Since 2006 he has been a junior
researcher with the Regional Development Agency of Northern Primorska.
Currently he is a Ph.D. student at the Faculty of Electrical engineering,
University of Ljubljana. His research interests include circuit simulation,
circuit optimization, and modeling and simulation of device mismatch.



1 Introduction

The paper is an overview of MOS transistor mismatch
modeling and simulation. Mismatch is an effect that
arises in IC fabrication and is a limiting factor of the
accuracy and reliability of many analog and digital inte-
grated circuits. Due to mismatch two equally designed
(drawn) transistors display different electrical behavior
due to mismatch. The main reason for the differences
is the non-uniformity of process parameters across the
wafer. Mismatch affects electrical parameters of the
transistor, which in turn differ between two identically
drawn devices. Consequently the operating point and
other circuit characteristics differ from their desired val-
ues.

The first studies on MOS technology mismatch were
done in the early 80’s on capacitors [1, 2]. Later study
of mismatch was extended to MOS transistor because
not all high speed precision circuits can be designed
with matching capacitor technique. The first researches
of MOS transistors matching identified some sources
of mismatch [3] and defined a model that expressed the
standard deviation of threshold voltage (Vt) and cur-
rent factor (β) with the physical parameter of the MOS
transistor [4]. A general parameter mismatch variance
model was presented by Pelgrom et al. [5] in 1989. This
simple model represented the reference for mismatch
modeling in analog integrated circuits for a decade.

The rest of the paper is organized as follow: In Section
2 two types of mismatch effect are presented. Further
section 3 describe different way of mismatch modeling
and in section 4 some common approaches to simulate
mismatch are shown.

2 Stochastic and systematic mismatch

The main reason for MOS transistor mismatch is the
stochastic nature of the fabrication process. After the
dies are produced some additional mismatch is added
during the die bonding [6]. In general mismatch can be
divided in two components: a local (statistical) and a
global (stochastic) component.

2.1 Stochastic

The main reason for the statistical component is the
variation of the fabrication process, caused by random
microscopic device architecture fluctuations, such as
statistical variations in the number of dopant atoms,
built-in electrical charges, gate-oxide thickness, edge
roughness, etc.

Stochastic mismatch can only be reduced with better
process control and larger transistor areas. The W/L
ratio also influences transistor mismatch. In [7] it was
shown how matching can be improved without chang-
ing the layout area. Better matching is obtained if the
ratio. This, however, reduce the switching speed. Be-
cause of this weakness the approach is not frequently
used.

2.2 Systematic

Some possible reasons for the systematic component
are non-uniform thermal distribution during the fabri-
cation process, lens aberration during the photolitho-
graphic process, etc. The systematic component is de-
terministic and also a model is available in [8], but be-
cause the placement and the orientation of the transis-
tor on the die and within the wafer are unknown in the
design phase, it is also often modeled as a stochastic
process.

Systematic mismatch can be reduced to great extent
with proper layout. For the best matching of two
equally designed devices they should be as close as pos-
sible with their wider side in parallel. In Fig. 1. The
transistors pair 1 and 3 matches better than 1 and 2.
Much better results can be achieved by dividing a tran-
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Fig. 1 Systematic mismatch area

sistor in smaller devices connected in parallel that are
arranged in different patterns [9]. Three different layout
techniques capable of canceling systematic mismatch
error due to higher-order gradient effects are presented
in [10]. These are central symmetry pattern (Fig. 2 a-
f), circular symmetry pattern (Fig. 2 g) and hexagonal
tessellation (Fig. 2 h). The n-th order central symmetry
and n-th order circular symmetry can cancel mismatch
from linear to the n-th order polynomal between two
devices by using 2n unit cells for each one. The hexag-
onal tessellation has a higher area-efficiency because it
can cancel quadratic gradient with only 3 units per de-
vice.

3 Modeling
Random variations of physical parameters result in ran-
domly distributed MOS transistor model parameters.
Most often the Gaussian distribution is used for model-
ing the stochastic variations of model parameters. The
amount of mismatch can be expressed with standard de-
viations (σ) of transistor model parameters. There are
different approaches for calculating this standard devia-
tion. Simple formulas (e.g. square root of area rule) are
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Fig. 2 Pattern to reduce systematic mismatch. 1 and 2
denote the smaller devices that constitute transistors 1
and 2.

most commonly used. On the other hand correlation
functions, and frequency domain analysis with spatial
spectra give more general results.

3.1 Simple Formulas

In 1986 Lakshmikumar et all. [4] described the MOS
transistor mismatch model for the standard deviation of
the threshold voltage (VT ) and current factor (β), which
was derivered from the physical sources of mismatch.
In 1989 Pelgrom [5] proposed a more general model
based on mathematical treatment done in the frequency
domain, and not in the spatial domain as Lakshmikumar
did. The model takes into account local process varia-
tions (characterized by spatial white noise) and global
proces variation (characterized by a single spatial fre-
quency inversely proportional to the wafer diameter).
The standard deviation of a parameter difference (∆P )
between two identically drawn transistors is expressed
by Eq. (1),

σ2(∆P ) =
A2

p

WL
+ S2

p ·D2 (1)

where AP and SP are technology-dependent parame-
ters, W and L are channel dimensions, and D is the dis-
tance between two transistors. Most commonly used
transistor parameters in mismatch modeling are thresh-
old voltage (VT ) and current factor (β), although some
models use additional parameters [11].

3.2 Short and narrow channels

The model presented in (1) is a good approximation for
transistor sizes above 2µm. For short and narrow chan-
nel transistors built in 0.7µm CMOS technology some

new effects must be considered and additional terms ap-
pear in Eq. (2) and Eq. (3) [5, 12]. For small geome-
try MOS devices the channel depletion tickness can no
loger be considered uniform. The depletion charge vari-
ance contributes a 1

WL2 term and a 1
W 2L term resulting

in a new mismatch model for threshold voltage (2).

σ2(∆Vt) =
A2

1Vt

WL
+

A2
2Vt

WL2
−

A2
3Vt

W 2L
+ S2

Vt
D2 (2)

An extendent current factor mismatch model (3) has
been presented in [5]. Pelgrom predicted that for short
and narrow channel devices the edge roughness effect
becomes important and appears as additional terms in
the current-factor variance.

σ2

(
∆β

β

)
=

A2
1β

WL
+

A2
2β

WL2
+

A2
3β

W 2L
+ S2

βD2 (3)

For big devices the two terms
(

1
W 2L and 1

WL2

)
in Eq.

(2) and (3) can be neglected and model (1) is obtained
[5]. The last term in Eq. (2) and (3) is due to gra-
dient mismatch. The value of mismatch model (2, 3)
parameters (e.g. A1V t, A1β , etc.) can be obtained by
processing statistical data acquired from the measure-
ments of many dies with several transistors (different
W/L values) distributed across a die.

On the other hand some physical models are also avail-
able in the literature for short channel devices. Two dif-
ferent approaches for modeling the short channel effect
and a model that takes into account the quantum effect
are presented in [13].

3.3 Frequency domain analysis with spatial spec-
tra

A more general approach is frequency domain model-
ing with spatial spectra [14]. The value of a transistor
parameter is obtained by integrating a noise function
p(x, y) representing parameters variation over the de-
vice area. The difference between a parameter of two
transistors with geometries W × L at distance D is ex-
pressed with Eq. (4). For convenience it has been as-
sumed that spacing D is along only one axes (in this
case x-axis).

∆P =
1

WL

(∫ L
2

−L
2

∫ −D
2

−W−D
2

p(x, y)dydx (4)

−
∫ L

2

−L
2

∫ W+ D
2

D
2

p(x, y)dydx

)
=

1
WL

∫ ∞
−∞

∫ ∞
−∞

g(x, y)p(x, y)dxdy

If the transistor area is represented by a pulse function
g(x, y) (Fig. 3), the integral of p(x, y) is related to the
convolution between p(x, y) and g(x, y). By means of a
two-dimensional Fourier transformation the geometry-
dependent part G(ωx, ωy) is separated from the mis-
match generating process P (ωx, ωy). With the use of
Parseval’s theorem the standard deviation of a parame-
ter difference between two transistors can be expressed



with the following equation.

σ2(∆P ) =
∫ ωy=∞

ωy=−∞

∫ ωx=∞

ωx−∞
|P (ωx, ωy)|2 (5)

·|G(ωx, ωy)|2dωydωx

The Fourier transform G(ωx, ωy) of g(x, y) is shown in
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Fig. 4b. The spectrum of the noise function P (ωx, ωy)
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Fig. 4 G(ωx, ωy)-Fourier transform of the pulse func-
tion g(x,y)

are modeled with different functions and consequently
different results can be obtained. A good choice is a
function given by Eq. (6).

Pwcn(ωx, ωy) =

√
A2

P +
k2

P(
ω2

x + ω2
y

)aP
(6)

The spectrum of the noise function Pwcn is composed
of white noise (stochastic mismatch) and colored noise
(systematic mismatch). The parameter AP represents
the white noise while parameters kP and aP represent
the colored noise. The spectrum of the function Pwcn is
shown in Fig. 5. Assuming only white noise (kP = 0)
the stadard deviation reduces to the first term of Pel-
grom’s model (1).

Fig. 5 Spectrum of the function (6)

The advantage of frequency domain analysis with spa-
tial spectra is its generality. It is valid for transistors,
capacitors etc. The downside of this mathematical treat-
ment is that it does not give physical insight and that it
requires the knowledge of the final layout.

3.4 Analysis by mean of correlation functions

A similar approach to frequency domain analysis with
spatial spectra is the use of correlation functions [15].
The main advantages of this method is that instead of
parameter standard deviation one obtains the covari-
ance matrix [Cpp]ij , that describes the joint probability
distribution of parameter p across all transistors. The
elements of the matrix are obtained by integrating a co-
variance function over the i− th and j − th transistors
area (see Eq. (7)).

[Cpp]ij =
1

WiLiWjLj

∫ xi+Li

xi

∫ xj+Lj

xj

∫ yi+Wi

yi

(7)∫ yj+Wj

yj

Cpp(xA, yA, xB , yB)dxAdxBdyAdyB

The covariance function between parameter p at point
TA(xA, yA) and point TB(xB , yB) is calculated using
the following equation,

Cpp(xA, yA, xB , yB) = Rpp(xA, yA, xB , yB) (8)
−E(p(xA, yA)) · E(p(xB , yB))

where,

Rpp(xA, yA, xB , yB) = E(p(xA, yA)p(xB , yB)) (9)

is the autocorrelation function for parameter p and
E(p(x, y)) is the expected value of parameter p at lo-
cation (x, y). For such approach the characteristics of
the stochastic process p(x, y) should be known. The
equations (7) and (8) can be simplified if the process
p(x, y) is invariant under coordinate translation [15].
Consequently the expected value E(p(x, y)) becomes
constant and the autocorrelation function depends only
on the distances τxij

and τyij
between two points.

The results of this method depends on the choice of the
autocorrelation function. Three examples are shown in



[15]. By choosing an impulse autocorrelation function
(white noise)

Rpp(τx, τy) = b2δ(τx)δ(τy) (10)

the first term of Pelgrom’s model (1) is obtained. The
function is composed of two Dirac functions δ(τ) and
of parameter b, which characterizes the process.

For the complete Pelgrom’s model white noise with
random gradient must be chosen. The autocorrelation
function is calculated from (11), where parameters χ
and γ are two random values.

p(x, y) = χx + γ (11)

In this case the function is not translation invariant.

The best choice is a Gaussian autocorrelation func-
tion, which removes a major shortcoming of Pelgrom’s
model that causes the mismatch to increase beyond
any limit with increasing distance. The autocorrelation
function is given by

Rpp(τx, τy) = ap · exp[−K2
pp(τ

2
x + τ2

y )] (12)

There are many advantages of this approach: it is not
limited to a pair of devices, it can be applied to any
stochastic model of the process p(x, y). Using this ap-
proach the cross-covariance between two different pa-
rameters of two diferent transistors can also be obtained
in a similar way [15]. The lowrside are the same as
those mentioned in the previous section(frequency do-
main analysis).

4 Simulation
Mismatch can be simulated in several different ways.
The goal of mismatch simulation is to obtain the
standard deviation of circuit properties caused by the
stochastic nature of transistor model parameters.

4.1 Monte-Carlo simulation

Brute force simulation based on Monte-Carlo analysis
is simple, precise and widely used [16, 17, 18]. Several
thousand circuits with randomly chosen parameters ac-
cording to the probability density function of parame-
ter p (pdf(p)) are generated and simulated. The most
frequently used distribution is Gaussian but the method
is appropriate for any kind of distribution pdf(p). It
can also accomodate correlated parameters in a fairly
straight forward fashion.

Before the simulation the function pdf(p) for all pa-
rameters p (for example VT and β) of all transistors in
the circuit must be given. Equation (1) is a good and
widely used approximation for the standard deviation
of the pdf(p). The mean values of electrical parame-
ters should also be available before the simulation. If
we are interested in the distribution of VX (see Fig. 6)
then the values of VT and β for both transistor should be
randomly chosen according to individual pdf(p). This
should be done for several thousand simulations (e.g.
10000). The results are then statistically processed in
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Fig. 6 A Differential pair

order to obtain the distributions and the standard devia-
tion of VX .

The downside of this method is the huge amount of
computation required for the simulation of thousands
of circuits.

4.2 Simulation based on small signal analysis

A faster approach than Monte-Carlo is small signal
analysis. This analysis assumes that the changes caused
by the stochastic nature of model parameters are within
the bounds where the circuit behaves linearly. The
stochastic nature of model parameters results in the
variation of the MOS current which is represented by
the current sources δIDS connected in parallel with
MOS transistor channels (Fig. 7). Normal distribution
is assumed for δIDS . The standard deviation of δIDS
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Fig. 7 A differential pair affected by mismatch.

in saturation is calculated using (13), where parameters
IDS and VGS represent the operating point while VT

and β represent the transistor parameters.(
σ(δIDS)

IDS

)2

=
(

σ(β)
β

)2

+
(

4σ(VT )
VGS − VT

)2

(13)

Eq. (13) represents a simple model [5, 19] not taking
into account correlation between VT and β. If the stan-



dard deviation od δIDS are not correlated then the stan-
dard deviation of VX can be expressed as

σ2(VX) =
n∑

i=1

(
∂VX

∂δIDSi

)2

· σ2(δIDSi) (14)

The sensitivity (αi = ∂VX/∂δIDSi) provides the in-
formation how much the variation of IDSi influences
the variation of VX . There are different ways to cal-
culate the sensitivities of an n-transistor circuit. The
heuristic approach and sensitivity analysis will be pre-
sented. A similar approach was used in [20] where the
influence of process parameters on electrical parame-
ters is calculated. Process parameters are those physi-
cally independent parameters that control the electrical
behavior of a device. Electrical parameters are those
that are of interest to the designer.

4.2.1 Finite difference approach

This heuristic approach takes n+1 simulations to calcu-
late the sensitivities. One simulation is needed for the
common point and n-simulations are needed for per-
turbed circuits. In the following equation an example
for the calculation of a single sensitivity is shown.

αi =
VX(δIDSi)− VX(0)

δIDSi
(15)

4.2.2 Sensitivity analysis

A faster approach is the use of sensitivity analysis, be-
cause the circuit is solved only once for the whole set
of sensitivities. This approach resembles the small sig-
nal noise analysis, where noise sources are replaced by
mismatch sources. When the linearization is done and
the sensitivities are known, the standard deviation of
VX is calculated using equation (14). This approach
was used in [15] where not only the means for simulat-
ing the effect of mismatch on the operating piont, but
also small signal AC and transiant effects of mismatch
can be simulated very efficiently.

5 Example
In this example the optimization of MOS transistor mis-
match is shown. The mismatch causes an opamp to ex-
hibit offset voltage. This voltage varies randomly be-
tween different instances of the circuit. The goal was to
include the offset voltage as yet another criterion in the
process of circuit optimization.

Due to the limitations of the simulator (SPICE lacks
support for sensitivity analysis) and the limited avail-
ability of mismatch parameters the finite difference ap-
proach with the simplest mismatch model was used.
The standard deviation of the threshold voltage (Vt) and
current factor (β) was calculated with the help of (16)
and (17).

σ(Vt) =
AVt√
WL

(16)

σ(β) =
Aβ√
WL

(17)

These two equations are based on the first term of
the Pelgrom model (1). Systematic mismatch was ne-
glected due to the assumption that the devices are lo-
cated close to one another. The constants AVt and Aβ

for the 0.18µm technology were obtained from [21].
The offset voltage was obtained as the standard devi-
ation of the output voltage at zero input voltage. The
circuit (opamp) is depicted in Fig. 8. The results of
the optimization are listed in Tab. 1. The second col-
umn contains the transistor areas and the offset voltage
obtained by including mismatch effects in the set of op-
timization goals. The third column lists the same circuit
propertis when mismatch effects were not included. It
can clearly be seen that including the mismatch effects
in the cost function results in the enlargement of the
transistor areas and the reduction of the offset voltage.
In Tab. 2 the finite difference approach is compared to

Tab. 1 Comparsion of obtained transistor sizes and out-
put offset voltage.

Transistor With Without
mismatch mismatch

Mn1b, Mn1,Mn4 11.5µm2 8.1µm2

Mp3 0.31µm2 0.31µm2

Mp1,Mp2 16.5µm2 9.3µm2

Mn2,Mn3 32.3µm2 19.8µm2

Offset 0.11 mV 0.14 mV

the Monte-Carlo analysis with 2000 samples. The re-
sult of the finite difference approach agrees well with
the result of the Monte-Carlo analysis.

Tab. 2 Standard deviation of output voltage

Approach Obtained standard deviation
Finite difference 0.1162mV
Monte-Carlo 0.1159mV

6 Conclusion
An overview of modeling and simulation of MOS tran-
sistor mismatch has been presented. Many different
models of mismatch can be found in the literature.
The effect of device mismatch can be estimated using
several different approaches. Only some of these ap-
proaches can be used for general purpose due to the lim-
ited availability of mismatch model parameters and lim-
ited capabilities of circuit simuators. In the given exam-
ple it was shown how mismatch can be simulated and
reduced by using a simple finite difference approach in
conjunction with circuit optimization. The results agree
well with the results of the Monte-Carlo analysis.
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Fig. 8 A simple operational amplifer.
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