
New optimising feature in SPICE

Janez Puhan, Tadej Tuma, Iztok Fajfar
Fakulteta za elektrotehniko

Univerza v Ljubljani
Tržaška 25, 1001 Ljubljana, Slovenija

janez.puhan@fe.uni-lj.si, tadej.tuma@fe.uni-lj.si, iztok.fajfar@fe.uni-lj.si

Abstract

The field of optimisation is still not appropriately
covered in modern computer programs for circuit
analysis as SPICE, which was originally developed at
the University of California at Berkeley. The last official
release of SPICE was published in 1992 and includes
interactive interpreter language called Nutmeg, which
is at first glance very convenient for coding optimisation
loops. But it turns out that Nutmeg has numerous of
bugs and is therefore unsuitable for optimising larger
circuits with more parameters. Because of that reason
the original code was modified. The majority of bugs
were found and fixed. The code was also modified in
order to run under Windows 95/98/NT. New
compilation of SPICE, which offers a native SPICE
environment on PC and allows longer coding (for
example optimisation method) in Nutmeg, is introduced
in this paper. Further, Nutmeg shows as to slow
because of its interpreter nature. To overcome this
problem in optimisation loops, a new command for
circuit optimisation was added. In the paper, coding of
optimisation loop in Nutmeg and the new optimize
command are presented through two cases. All
simulation files as well as the new compilation of
SPICE may be downloaded from http://fides.fe.uni-
lj.si/spice/.

1 Introduction
SPICE (Simulation Program with Integrated Circuit

Emphasis) is the most commonly used analog circuit
simulator today. Through years it has become a
nonofficial industrial standard for computer aided
design of electronic circuits. SPICE is a general-purpose
analog simulator. It contains models for most circuit
elements and can handle large non-linear circuits. The
simulator can perform several different types of circuit
analyses. The most important are the dc analysis, ac
small-signal analysis and transient analysis, which is
numerically the most complex analysis in SPICE.

The simulator was developed at the University of
California, Berkeley, and was first released in 1972.
Many scientists at Berkeley and other institutions have
contributed to the development and improvement in
subsequent versions of SPICE. The next major release
of SPICE, called SPICE2, was published in 1975 [1].

The core of the program has remained intact, even after
many improvements and additions. The last major
release, SPICE3 [2], came in 1985 with a conversion of
the source code from Fortran to the C programming
language. The source code of Berkeley's SPICE is
public domain and is still available as freeware at
ftp://ic.berkeley.edu/pub/ Spice3/.

In the last officially published version 3f4, the
program is divided into two parts: the simulator and the
front-end. The front-end includes an interactive
interpreter programming language called Nutmeg, which
allows interactive SPICE sessions. It acts as a simple
pre- and post-processor. On the other hand it has all the
properties of a real programming language and should
be therefore appropriate for coding of optimisation
methods. Our previous research showed that this is the
fastest possible approach to the circuit optimisation [3].
Unfortunately Nutmeg yielded a numerous of bugs. It
turned out that it has serious problems with memory
allocation and memory leaks respectively. That was the
main reason, why Nutmeg was not able to perform
optimising loops on larger circuits with more than three
or four parameters.

So we decided to recompile whole SPICE version
3f4 again on an IBM compatible personal computer and
at the same time find bugs and fix them. The original
source code can be compiled on MS-DOS operating
system to a limited extent (simulator only) without any
modification. We modified original code in a such way,
that a full version of SPICE 3f4 (simulator and front-
end) can be compiled and run on a PC with Windows
95/98/NT.

2 An optimisation example in Nutmeg
We are looking for values of the two resistors R2 and

R3 in a simple schmitt trigger circuit in Figure 1. We
want to have switching voltages at 3V (up) and at 2V
(down). The high and low level output voltages must
differ for at least 10V.

First we have to define some explicit as well as one
implicit constraint. The explicit constraints are obvious
since we know that the resistor values can't possibly lie
outside the intervals (1). And because we want a
difference between high and low voltage at least 10V,
the implicit constraint is given by (2).

Figure 1: A simple schmitt trigger circuit

Ω≤≤Ω
Ω≤≤Ω

k501k

k30k10

3

2

R

R (1)

V10),(),(32min532max5 >− RRvRRv (2)

The most important part of any optimisation is certainly
the cost function. In our case we want the cost function
to reflect the accuracy of switching voltages. Since we
intend to do transient analyses, we define the cost
function as a normalised square area between the real
and ideal response:

2
32min532max5

0

2
325ideal325

32
)),(),((

)),,(),,((

),(
RRvRRv

dttRRvtRRv

RRE

T

−

−
=
∫

 (3)

The cost function must be a positive scalar and will be
minimised during the optimisation procedure. The ideal
value is zero, in which case the switching voltages are
exactly at 3V and 2V. Transient response v5 has to be
transformed because of the numerical noise in it. So
instead of v5 we will use the expression (4), where
boolean operator > is used. Using normalised ideal
response v5ideal-norm (5) the cost function can be further
simplified (6).

min5min5max5
min5max5

5)(
2

vvv
vv

v +−

 +

> (4)

min5min5max5norm5ideal5ideal)(vvvvv +−= − (5)

dtv
vv

vE
T

∫ −−

 +
>=

0

norm5ideal
min5max5

5 2
 (6)

The implementation of the implicit constraint and
the cost function into Nutmeg source code is fairly
simple:

* transient analysis (T = 11s)
tran 1ms 11s
linearize
* the cost function (v(5)[5500] = v(5)max)
let ideal = (vector(11001) gt 2999) and (vector(11001) lt 9001)
alias cost let cf = mean(abs((v(5) gt ((v(5)[5500] + v(5)[0]) / 2))

+ - ideal))

As for the optimisation algorithm, we decided to use
well known constrained simplex optimisation method. It
is robust and simple. Since the implementation of the
optimisation algorithm takes over 200 Nutmeg
programming lines, we will not discus it any further at
this point. The entire simulation file schmitt_trigger.cir
can be downloaded from http://fides.fe.uni-lj.si/spice/.

In our case the parameter space is two dimensional,
so the cost function can be plotted over the explicitly
constrained parameter plain. It has several channels and
local minima as we can see in Figure 2. The channels
are consequence of numerical errors, which take place
because the time step in transient analysis is too long. It
is determined automatically. We could define its
maximum length, but one analysis would take more
time than.

Figure 2: Cost function

The execution of our optimisation loop takes 70
transient analyses and stops at the global minimum with
a cost function value of 0.004 and resistor values of R2

= 18kΩ and R3 = 20kΩ respectively. The optimisation
takes about 27 seconds on a Pentium 350MHz personal
computer running Windows 95.

3 New optimize command
Any optimisation problem can be handled with

Nutmeg. To solve a particular problem we have to
choose appropriate optimisation method and code it in
Nutmeg code as it was shown in the previous section.
But that kind of approach to optimisation takes a great
deal of time for writing and debugging our own Nutmeg
programs. We added a new command called optimize to
Nutmeg to avoid programming. The syntax of the
optimize command is as follows:

optimize [analysis [<n> delete | <expression>] |
cost [<expression>] |
implicit [<n> delete | <expression>] |
method [<name> [<parameter1> <value1>

[<parameter2> <value2> ...]]] |
parameter [<n> delete | {[element <name>]

[parameter <name>] [low <l>] [high <h>]
[initial <i>]}] |

options [<option1> <value1>] [<option2> <value2>] ...

We can define the cost function, one or more
analyses and implicit and explicit constraints of the

v(1)
input

r1 10k1 2

v(5)
output

3

5

4

6

r2

r4
1k

v0
24V

q2
2n2222

+

+

q1
2n2222

r3

3V2V

> 10V

want to (v (v)):
v1
pulse

5ideal 1

t
T0

1v (t)

parameters in a very simple way with the optimize
command. The optimising problem from the previous
section can now be described in a few lines:

* parameters, and explicit constraints and initial point
optimize parameter 0 element r2 parameter resistance

low 10k high 30k initial 12k
optimize parameter 1 element r3 parameter resistance

low 1k high 50k initial 8k
* one implicit constraint
optimize implicit 0 v(5)[5500] - v(5)[0] gt 10
* analyses performed in every iteration
optimize analysis 0 tran 1ms 11s
optimize analysis 1 linearize
* cost function
optimize cost mean(abs((v(5) gt ((v(5)[5500] + v(5)[0]) / 2)) -

ideal))
* optimising method is constrained simplex (all method
* parameters are left default)
optimize method complex
* run optimisation algorithm
optimize

The results of the optimisation with optimize
command are approximately the same as described in
the previous section. Small differences occurred
because of the numerical noise in both cases. The
optimize command needed slightly less time because all
loops are now hard coded.

In optimize method line we can choose among
several optimisation methods:

• steepest descent
• Newton's method
• Davidon-Fletcher-Powell's method
• random search
• grid search method
• search along coordinate axes
• Powell's method
• Hooke-Jeeves's method
• constrained simplex method
• simple genetic algorithm
• evaluating cost function across whole parameter

space

When we run particular optimisation method on a
given circuit with optimize command a general
optimisation loop is performed and it is always the
same. Its algorithm is as follows:

do
if number of iterations > max break
change parameter values
verify explicit constraints and correct parameter values

if necessary
execute all analysis commands

(analysis 0, analysis 1, ..., analysis N)
number of iterations = number of iterations + 1
if not implicit constraint 0 or not implicit constraint 1 or

... or not implicit constraint M continue
calculate cost function

while termination criteria not satisfied

4 An optimisation example with optimize
command

Let us now consider a circuit depicted in Figure 3,
which converts triangular signal waveform to sine

waveform. We would like to set the resistances in the
circuit so that the purest possible sine signal can be
obtained at the output.

Figure 3: Triangle to sine waveform converter

We will try to solve circuit analytically and calculate

the values of the unknown resistors. The first problem is
where to choose break points. The relative error on one
section equals (7) assuming b - a < π/2.

12

)(

2
ctg

2
1

sin

)(sin

2ababab

xdx

dxnkxxdx

b

a

b

a

b

a
r

−≈−−−=

=
+−

=

∫

∫ ∫
ε

 (7)

This result tells us that the best choice are
equidistant break points. If we assume ideal diodes with
cutin voltage ≈ 0.5V and Rupi << Rupoutj, than resistor
values can be calculated (Table 1).

Now we will optimise our circuit with the optimize
command. Because of symmetry of the circuit we will
observe only one half of the circuit in one quarter of a
period. In this case we have 12 parameters to optimise
Rup1 ... Rup6, Rupout1 ... Rupout6. The explicit constraints
(Table 1) are set around analytically calculated values.
There are no implicit constraints. Let the cost function
be defined as normalised square area between the real
and ideal response:

∫

∫ −
=

4

0

2
sine

4

0

2
sineout

)(

))()((

T

T

dttv

dttvtv

E
 (8)

It is a positive scalar and the circuit with ideal sine
response would have its value zero.

The initial point of optimisation method is
approximately the center of the explicitly constrained
parameter space.

Table 1: Resistor values (all values are rounded)

rdown1

+

+

vtri
pwl

t0

output

vminus
10V

rup2

rdown2

dup2
noname

rup7
1k

rin
100k

dup1
noname

rdown7
1k ddown6

noname

dup6
noname

ddown1
noname

ddown2
noname

rup1

rupout2

rupout6

rdownout6

rdownout2

rdownout1

rupout1

+
vplus
10V

T

t0

input

T

sinx

kx+n

a b

2 v = 20V

=

sin
t

T
π2

max

max

n = 7

vsinemax

vsinemax sin π
2

v
n n

-1

analytic exp. const. initial optim.
Rup1 4.6k 1k ÷ 10k 5k 3.8k
Rup2 510 100 ÷ 1k 500 480
Rup3 820 100 ÷ 1k 500 800
Rup4 1.1k 500 ÷ 5k 2.5k 670
Rup5 1.3k 500 ÷ 5k 2.5k 1k
Rup6 1.5k 500 ÷ 5k 2.5k 1.1k
Rupout1 17k 100 ÷ 50k 25k 9.1k
Rupout2 88k 10k ÷ 100k 50k 83k
Rupout3 220k 50k ÷ 500k 250k 270k
Rupout4 430k 100k ÷ 1meg 500k 560k
Rupout5 830k 100k ÷ 1meg 500k 740k
Rupout6 1.9meg 500k ÷ 5meg 2.5meg 2.2meg

We ran the optimisation with different optimisation
methods from the same initial point. The parameters of
all methods were set to their default values. So results
(Table 2) with the particular method could be improved
by fine tuning method parameters. Anyway we can see
that gradient methods have local character. They are
quickly trapped in a local minimum, which can be just a
consequence of numerical noise. Random and genetic
algorithm search across whole parameter space but they
need a lot of iterations to get satisfying results. Direct
search methods performed better. Hooke-Jeeves's
method and constrained simplex method were the best
among direct search methods. Hooke-Jeeves converged
fast, but constrained simplex gave slightly better results.
Time needed for optimisation was measured on 350Mhz
Pentium personal computer running Windows 95.
Optimal parameter values obtained by constrained
simplex method are shown in Table 1.

Table 2: Optimisation statistics

Iterations cost value time [s]
initial 2.7 10-3

analytic 3.2 10-5

steepest descent 114 7.4 10-5 6
newton 610 4.8 10-4 30
dfp 315 3.8 10-5 16
monte carlo 4000 3.8 10-5 180
grid search 4092 1.1 10-5 197
axis search 878 2.1 10-5 40
powell 1193 2.1 10-5 55
hooke jeeves 1320 8.7 10-6 68
complex 3931 6 10-6 209
sga 4160 3.5 10-5 194

To check if we improved analytically calculated circuit,
we will take a closer look after the harmonic distortion
of the output signal. We can see (Table 3) that
optimisation method starting from initial circuit, which
is worse than analytical circuit, gave better results than
analytically calculated. The reason is in taking real
diodes into account instead of ideal diodes in analytic
circuit.

Table 3: Harmonic distortion (normalised magnitudes)

initial analytic optimised

f0 1 1 1
2 f0 4.1 10-6 3.4 10-8 2.4 10-11

3 f0 3.8 10-2 4.6 10-3 7.4 10-4

4 f0 4 10-6 3.4 10-8 2.4 10-11

5 f0 1.6 10-2 2.9 10-3 1.3 10-3

6 f0 4 10-6 3.3 10-8 2.4 10-11

7 f0 2.1 10-3 1.2 10-3 1.3 10-3

8 f0 3.9 10-6 3.3 10-8 2.3 10-11

9 f0 1.1 10-3 1.3 10-3 3.7 10-4

5 Conclusions
A new optimize command was added to Nutmeg. It

represent a general optimising tool. Arbitrary circuits
can be optimised and arbitrary cost function can be
defined. The number of parameters is also not
constrained, and explicit and implicit constraints can be
defined.

Several optimising methods were built in the
optimize command. The well known difficulties of
gradient methods shown up. On the other hand direct
methods worked better. The Hooke-Jeeves's and
constrained simplex method gave the best results on real
circuits, but we will still have to do some tests on more
real cases.

References
[1] Laurence W. Nagel, "SPICE2: A Computer

Program to Simulate Semiconductor Circuits",
Memorandum No. ERL-M520, University of
California, Berkeley, 1975

[2] Thomas L. Quarles, "Analysis of Performance
and Convergence Issues for Circuit
Simulation", Memorandum No. ERL M89/42,
University of California, Berkeley, 1989

[3] Janez Puhan, Tadej Tuma, "Optimisation of
analog circuits with SPICE 3f4", Proceedings
of ECCTD '97, Volume 1, pages 177 - 180,
Budapest, 1997

[4] T. Quarles, A. R. Newton, D. O. Pederson, A.
Sangiovanni - Vincentelli, "SPICE3 Version
3f3 User's Manual", Department of Electrical
Engineering and Computer Sciences,
University of California, Berkeley, 1993

