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Abstract— One of the basic algorithms employed in IC design
automation is parametric optimization. It is used when a min-
imum of a so-called cost function is sought. There exist many
optimization algorithms. One of the most successful ones is the
Box simplex algorithm. The main drawback of this algorithm that
was observed in practice is its slow progress in the last stages of
the search. The paper addresses this issue by combining it with
a trust-region based algorithm. The combined algorithm was
implemented in the SPICE OPUS tool for circuit optimization
and tested on several real-world IC design problems. The results
show that the combined algorithm exhibits faster convergence
and in most cases results in a lower final cost function value
than the Box simplex algorithm.

I. INTRODUCTION

Many integrated circuit (IC) design problems (most notably
circuit sizing) can be reduced to solving

arg min
x∈A

f(x)

where x represents the vector of n parameters, A ⊆ Rn

is the design space, and f(x) is the so-called cost-function
(CF) which represents the circuit’s performance. Lower CF
value corresponds to a circuit with better performance. Let xi

denote the i-th component of vector x. In this paper the design
space is box shaped and is defined by constraints bi ≤ xi ≤
Bi, i = 1, ..., n. b and B are the vectors of lower and upper
bounds on parameters.

In past research the Box simplex [1] algorithm was found
to be very successful in solving IC sizing problems [2]. The
algorithm manipulates a set of points also referred to as the
simplex. The basic idea is to mirror and possibly contract
the point with the highest CF value to the centroid of the
remaining points. By repeating this operation the simplex
gradually shrinks and moves toward a point in space with a
lower CF value. The termination criterion of the algorithm is
based on the size of the simplex.

The Box simplex algorithm comes from the family of direct
search algorithms [3] that require no CF gradient evaluations.
As the sensitivity analysis is not fully implemented in most
circuit simulators, such methods are the first choice for circuit
optimization.

Simplex algorithms are very popular. A large part of their
popularity is owed to the fact that they are very simple to
implement and have some noise resistance properties. The
fact that they work with a population of points gives them
some global search capabilities. In the initial part of the search

simplex algorithms progress very rapidly. But as they close
in on a CF minimum their convergence deteriorates [4], [5].
Figure 1 demonstrates this shortcoming.
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Fig. 1. A plot of the best point cost function (CF) value and the relative
simplex size with respect to CF evaluation number for the digital delay
testcase.

A so-called cost profile at the final point (xf ) found by
the simplex algorithm for the digital delay test problem is
displayed in figure 2. Every curve represents a cross section
of the CF on a line through xf along the direction of one of the
optimization parameters. All curves cross at the same point at
x = 0. This point represents the final point xf . Two things are
clearly demonstrated by figure 2. The cost function contains a
fairly large amount of noise and local minima, and secondly
the final point at x = 0 is not even a local minimum. The
former observation was the reason for choosing a robust and
noise resistant optimization algorithm (Box simplex method)
in our past research [2]. The latter one, however, shows that
despite a fairly large number of CF evaluations the simplex
method stopped prematurely.

We expect a reduction in the number of CF evaluations and
a reduction of the final CF value if the simplex algorithm
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Fig. 2. Cost profile for the digital delay test problem. Each curve represents
a cross section along one of the optimization parameters through the final
point reached by the simplex algorithm. Zero represents the parameter value
that corresponds to the final point.

is replaced by a local optimization algorithm with strong
mathematical background (e.g. a trust-region algorithm) in the
final part of the optimization.

This paper attempts to improve the performance of the
Box simplex algorithm on real-world IC sizing problems by
using a trust-region based algorithm in the final part of the
search. In the following sections the Box simplex algorithm
and the used trust-region algorithm are described, followed
by the description of the combined algorithm. The main
characteristics of the used test problems are given and the
combined algorithm is compared to the original Box-simplex
algorithm. Finally the results are discussed and the directions
for future work are given.

II. THE BOX SIMPLEX ALGORITHM

The variant of the simplex algorithm that is used throughout
this paper was developed by Box [1] and slightly modified [2].
It manipulates a set of m ≥ n+1 points xi, i = 1, ...,m. Every
point has a corresponding CF value fi = f(xi). For simplicity
we assume that the points are ordered according to their CF
value (f1 ≤ f2 ≤ ... ≤ fm). By mirroring and contracting the
worst point xm, first to the centroid of the remaining m − 1
points (x∗ = (m − 1)−1

∑m−1
i=1 xi), and if that fails to the

best point of the simplex, a hopefully better point is obtained
which replaces xm. The algorithm stops when the simplex size
(∆ = 100/(m−1)

∑m−1
i=1 (

∑n
j=1(

xj
i−xj

∗
Bj−bj )2)1/2) falls below γs.

III. THE TRUST-REGION ALGORITHM

Trust-region algorithms [6] build a model of the CF (m(x))
and assume that it is valid over a set T that contains the

current point xc. T is also referred to as the trust region. The
model is minimized subject to x ∈ T resulting in point xm. If
m(xm) agrees well with f(xm) the trust region is expanded,
otherwise it is contracted. If f(xm) < f(xc) the current point
xc is replaced by xm.

Since the design space has rectangular shape, the most
natural form of the trust region is a hypercube. This can be
achieved by defining T using the l∞ norm as {x : ‖x −
xc‖∞ ≤ r} where r is the trust-region radius.

The model is built by evaluating the CF at a set of points
from T and then interpolating them with m(x). The most
common model in the literature is quadratic. Unfortunately it
requires (n+1)(n+2)/2 points to be evaluated. This number
quickly grows beyond the number of CF evaluations required
by the Box simplex algorithm. Therefore a quadratic model
is not the best choice. The proposed algorithm uses a linear
model that requires only n + 1 CF evaluations.

In our implementation of the trust-region algorithm all
of the optimization parameters are normalized to intervals
[0, 100]. The algorithm is stopped when the trust-region radius
r (expressed in normalized coordinates) falls below some
predefined value γt.

IV. SWITCH CONDITION

The point at which the Box simplex algorithm is replaced by
the proposed trust-region algorithm is determined by observing
two quantities: the simplex size and the rate of simplex size
change. The latter is obtained with regression from 2-tuples
of the form (i, ∆i) where i denotes the consecutive number
of CF evaluation.

The switch condition is not checked until there are at
least j > mµ1 2-tuples in the sequence. Supposing that the
algorithm is at j-th CF evaluation, the set of 2-tuples that
satisfies max(j − mµ2, 0) ≤ i ≤ j is used in the regression.
The obtained slope (kj) is usually negative as the simplex
is mostly shrinking and represents the rate of simplex size
change.

The switch condition is defined as −kj < ksn
−1/2 ∨ ∆j <

kd where ks and kd are user specified constants.
After the switch condition is satisfied the best point of

the simplex becomes the current point of the trust-region
algorithm. The initial trust-region radius is set to 100 so that
the whole design space is covered by T . Then the trust-region
algorithm is started.

Since the switch condition is based on the simplex size (just
as the Box algorithm’s termination condition) and the design
space is normalized to [0, 100], we expect the switch condition
to be applicable to a wide variety of CFs and design space
sizes.

V. TEST PROBLEMS

The combined algorithm was tested on 3 mathematical
functions and 8 real-world IC design problems. SPICE OPUS
[7], [2] was used for evaluating the CF. The test problems are
listed in table I. For every problem the number of optimization
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parameters (n), the number of circuit analyses, and the number
of MOS transistors are listed.

The CF was constructed according to [8] and is not the
subject of this paper where we are interested only in the op-
timization algorithm itself. The performance of the algorithm
can be assessed through the final CF value and the number
of CF evaluations that are needed to reach this value. A fair
comparison is assured by using the same termination condition
for all the test problems.

More strict termination conditions mean more CF evalua-
tions (which is not desired) and a lower final CF value (which
is desired). If algorithm A outperforms algorithm B both in
terms of the number of CF evaluations and final CF value,
algorithm A can be considered better.

TABLE I
THE NUMBER OF OPTIMIZATION PARAMETERS, THE NUMBER OF

ANALYSES IN ONE CF EVALUATION, AND THE NUMBER OF MOS
TRANSISTORS IN THE CIRCUIT FOR DIFFERENT TEST PROBLEMS.

Test problem n # analyses # MOS
lin 10 - -
sq1 10 - -
sq2 10 - -
nand 3 9 4
delay 12 2 6
ddamp 14 44 18
damp1 15 31 13
damp2 27 4 20
damp2c 27 20 20
lfbuf 36 4 32
lfbufc 36 20 32

The first 3 problems are mathematical functions. The first
one (lin) is a linear function of 10 variables. The minimum
occurs in one of the corners of the design space. The second
problem (sq1) is a convex quadratic function with minimum in
the center of the design space. The sq2 problem is a concave
quadratic function with minimum in one of the corners of
the design space. On all of these simple functions the Box
simplex algorithm reveals its weaknesses, most notably slow
convergence when it is closing in on a corner of the design
space.

The 8 problems that follow are real-world IC design prob-
lems. The nand problem attempts to size a digital nand gate. It
has only 3 optimization parameters. The digital delay problem
(delay) is somewhat larger with its 12 parameters. The circuit
consists of 2 inverters and a MOS resistor.

The remaining 6 problems are various opamp sizing prob-
lems. The ddamp case has a moderate number of optimization
parameters and a fairly large number of circuit analyses. The
damp1 case is a very simple opamp with a minimal number
of MOS transistors.

The damp2 case (see figure 3) is a fairly complex opamp. It
is sized for a single combination of operating conditions and
process variations (one corner point). The damp2c is the same
topology sized for 5 different corner points simultaneously.
This increases the amount of simulation needed to evaluate
the CF and also makes the CF more challenging to optimize
(local minima and noise).

The lfbuf and lfbufc cases represent an opamp that serves as
a buffer for low frequency signals. It is the largest test circuit.
The first version (lfbuf) is sized for a single corner point, and
the second one (lfbufc) for 5 corner points.

VI. RESULTS

The proposed combination of algorithms was implemented
in the SPICE OPUS circuit simulation and optimization tool.
The test problems were optimized with the Box simplex
algorithm (main optimization algorithm in SPICE OPUS) and
with the proposed combined algorithm. The results are listed in
table II. The following algorithm parameters and termination
conditions were used: m = 2n, γs = γt = 0.001, µ1 = 10,
µ2 = 100, ks = 0.22, and kd = 1.5.

Of the three mathematical functions the combined algorithm
outperforms the Box simplex algorithm on the lin and sq2 test
problems. For the sq1 test problem the combined algorithm
ends with a worse final CF value. If a more strict termination
condition is used (γt = 1.4 · 10−5), the combined algorithm
takes 2120 CF evaluations to reach the final CF value of 1.65 ·
10−6 (which is only slightly worse than the result obtained by
the Box simplex algorithm).

Of the real world IC design problems the nand case exhibits
worst performance when the final CF value is considered.
Nevertheless it is almost as good as the one obtained by the
Box simplex algorithm. All of the remaining cases resulted
in a better final CF value than the one obtained by the Box
simplex algorithm, most notably ddamp, damp2, and lfbuf.

Regarding the number of CF evaluations all of the IC design
test problems took less CF evaluations with the combined
algorithm than with the Box simplex algorithm. The savings
were highest with the largest cases and reached beyond 50%
(damp2c and lfbuf).

Overall the combined algorithm outperformed the simplex
algorithm on 7 out of 8 real world IC design problems.

TABLE II
THE COMPARISON OF THE NUMBER OF CF EVALUATIONS AND THE FINAL

CF VALUE FOR THE SIMPLEX AND THE COMBINED OPTIMIZATION

ALGORITHM.

Simplex Combined
N f N f

lin 5066 -999.993 888 -1000.000
sq1 2130 1.44e-6 1028 3.70e-3
sq2 6871 -24999.1 363 -25000.0
nand 295 166.644 172 166.735
delay 1334 13284.6 1215 12975.1
ddamp 1543 104.426 1453 91.2954
damp1 1716 9.58849 1365 9.58514
damp2 5719 2.64345 3369 2.05055
damp2c 4732 7.36757 2314 7.02317
lfbuf 9152 0.763508 3786 0.707504
lfbufc 5759 4.18654 3028 4.01531

Table III compares the performance measures of the damp2c
circuit obtained with the simplex algorithm and the combined
algorithm. The damp2c test problem is optimized across 5
corners ranging temperatures from 0 to 50◦, supply voltages
from 1.6V to 2.0V, and 5 CMOS process corners. 20 MOS
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Fig. 3. The schematic of the damp2 test problem.

TABLE III
RESULTING CIRCUIT PERFORMANCE FOR THE DAMP2C TESTCASE.

Performance measure Target Simplex Combined
Cost min 7.37 7.02
Area (µm2) min 7310 7160
Supply current (mA) min 0.992 0.984
AC gain (dB) max 63.6 64.2
Unity gain bw. (MHz) max 3.6 4.11
Phase margin (◦) max 41.1 40.4
Gain margin (dB) max 14.5 13.5
Swing (V) max 0.893 0.896
DC Gain (dB) max 43.3 43.4
Settling time (ns) min 275 333
Overshoot (%) min 0.765 0.857
Slew rate (V/µs) max 3.4 3.8
Rise time (ns) min 141 126
Fall time (ns) min 315 301

transistors, 2 capacitors, and 3 resistors are subject to opti-
mization resulting in 27 optimization parameters.

Of the 13 performance measures, the circuit that resulted
from the combined algorithm run has 9 performance measures
that are better than for the circuit that resulted from the
simplex algorithm run. The total number of candidate circuit
evaluations was 51% lower and the final CF value was 5

VII. CONCLUSION

A combined optimization algorithm consisting of the Box
simplex algorithm used in the first stage and a trust-region
algorithm in the second stage of the search was presented.
The reason for combining the two algorithms was the slow
convergence of the Box simplex algorithm observed toward
the end of the search. It was hypothesized that the combined
algorithm can be faster and obtain a better final result than the
original Box simplex algorithm due to the strong mathematical
background of trust-region algorithms.

The simplex algorithm manipulates a set of points in the
design space. This makes it noise resistant and gives it some
global search capabilities. A measure for the diameter of the
simplex is the simplex size. The point at which the algorithm
switches to the trust region algorithm is determined based on
the size of the simplex and the rate at which the simplex size
is decreasing. A linear model was used in our trust-region
algorithm to make it feasible for higher dimensional problems.

The combined algorithm was compared to the Box simplex
algorithm on 3 mathematical functions that point out the
weaknesses of the simplex algorithm and a set of real-world
IC design problems. The combined algorithm outperformed
the Box simplex algorithm in terms of the final CF value and
the number of CF evaluations on most test problems (9 out of
11).

The use of a fast local search method in the second part
of the optimization when the algorithm is already in the
neighborhood of a good local minimum has proven to be most
beneficial. In the future we intend to utilize a local search
algorithm in combination with a global optimization method
that is capable of finding the global minimum of the cost
function.
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