
Analogue integrated circuit sizing with several
optimization runs using heuristics for setting

initial points

Comment proportionner des circuits analogues
intégrés avec plusieures marches

d’optimisation à l’aide d’heuristique pour
détérminer les points du départ

J. Puhan, Á. Bűrmen and T. Tuma�

Circuit sizing (e.g. determining MOSFET channel widths and lengths which result in the most appropriate and robust circuit) is an optimization process.
When it is completed, there always remains a dilemma, whether a better solution exists. With different starting points one can arrive at different local
minima. A heuristic process, consisting of many optimization runs started from different initial points, is proposed. It tries to find another local minimum
of the cost function in every run and thus reveals some additional information about the circuit. The mathematical background of the algorithm used is
described. Finally, the heuristic algorithm is tested on some real integrated operating amplifier designs. The results show, that from the cost function’s
point of view surprisingly many equivalent solutions exists.

Proportinner les circuits, c’est à dire, détérminer la largeur et la longueur des cannaux MOSFET, qui résultent en le circuit le plus approprié et le plus
robuste, est sans doute un procès d’optimisation. Mais, le procès terminé, il y reste toujours une dilèmme, s’il on y existe pas une solutions meilleure. Si on
prend les points du départ différents, on peut arriver aux minima locaux très divers. L’article propose de mettre en oeuvre un procès heuristique, en train
duquel on fait marcher l’optimisation plusieures fois déterminant les points du départ très différents. Pendant chaque marche d’optimisation on essaie de
trouver un minimum local d’une fonction de critère et ainsi obtenir des informations supplémentaires sur le circuit. L’article engage le fond mathématique
de l’argorithme utilisé. Enfin, l’argorithme heuristique est mis sous l’épreuve en cadre des dessins réels intégrés d’amplificateur opérant. Le résultat est
surprénant; du point du vu de la fonction de critère, il y existe beaucoup des solutions équivalentes.
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I. Introduction

Creating a good analogue integrated circuit (or analogue part in a
mixed circuit) design is still a hard task, which usually requires se-
nior designer knowledge and skills. There are no predefined libraries
of standard cells and networks as in the digital world. Therefore the de-
sign of an analogue circuit consisting of a few transistors can be more
time consuming than designing a fairly complex digital circuit. Ap-
plication specific integrated circuit (ASIC) designers also frequently
reuse their previous solutions and adapt them to their current needs. A
circuit simulator is indispensable in this development procedure. The
computers are mainly used to analyze human designs.

Initially a suitable circuit configuration is required, which can po-
tentially fulfil the given requirements. This task is mostly left to the
designer although several tools partially automating the topology syn-
thesis appeared in the past [1]–[4]. Then the circuit sizing problem
has to be solved. One desires such element sizes (e.g. MOSFET chan-
nel widths and lengths, capacitors, resistors, etc.) that required circuit
properties are met in the most robust manner. Circuit sizing is an opti-
mization process by its nature and one can find quite extensive litera-
ture in this area. Sizing of nominal circuits was considered in [5]–[6],
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sizing problems accounting for parameter tolerances (parameter cen-
tering) were addressed in [7]–[9], and worst-case optimization in [10]–
[12]. Various optimization tools were developed, like equation based
GPCAD [13], which uses geometric programming formulation of an
optimization problem [14] on predefined posynomial equations, AMG
[15], utilising a symbolic simulator [16] to obtain circuit equations,
and the simulation based ASTRX/OBLX [17]. Recently numerous pa-
pers (e.g. [12], [18]–[23]) are addressing the sizing problem from dif-
ferent aspects like process and operating tolerances, mismatch, yield
and robustness.

Despite all the research efforts made, circuit sizing is still a task
that is addressed manually. New sizes for the next experiment are de-
termined by a human designer and not automatically by the optimiza-
tion method. In our opinion the automated optimization is rarely used
because of three major reasons:

� there are no general optimization tools integrated into any of the
most popular circuit simulators for ASIC design (optimization
tools, e.g. [13], [15], [17], are not integrated into commercial
simulators and therefore offer only very limited capabilities),

� the mathematical formulation of the cost function, which would
yield acceptable solutions, is rather complicated and demands
an experienced user (optimization algorithms can get trapped in
senseless regions of parameter space, resulting in degenerated so-
lutions; searching for the minimum of the cost function can also
result in circuits highly sensitive to manufacturing process and
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operating condition variations [21]; a possible solution is the use
of implicit constraints [14], [20], [23]), and

� the results of the optimization run are not to be unlimitedly
trusted (in many cases the minimum found is not the global one,
even if a global optimization method was used).

This paper focuses on the last of these three drawbacks. There exists
many different gradient, quasi gradient, and direct search optimization
algorithms. A good survey of the first family can be found in [24]. Gra-
dient based methods are greedy by default and require the derivatives
of the cost function to be calculated at each iteration. When applied
to circuit sizing, the derivatives are usually calculated by a sensitiv-
ity analysis, meaning that the cost function can’t be of arbitrary form.
Those methods have a strong local nature and are therefore usually
used for finetuning circuits [25].

On the other hand direct search methods [26]–[28] do not require
additional gradient computations. Convergence properties for pattern
search methods have been reported in [29]. These methods can be clas-
sified by their behaviour as local or global. Some global methods even
guarantee to find the global minimum if certain conditions are fulfilled
[30]–[31].

Performance of an optimization method on cost functions depends
on many parameters one of which is the initial point. The same method
can lead to quite different results for different initial points. Local
methods are more sensitive than global ones. The latter have always
some randomness build into them, which at least partially neutralizes
the importance of the proper selection of the algorithm’s initial point.

The selection of the initial point is usually left to the user, who re-
lies upon knowledge and intuition. Usually a point is chosen where the
circuit’s best performance is expected. If the choice is right, the min-
imum of the cost function lies near and the optimization task turns to
fine tuning of the circuit. But on the other hand no additional informa-
tion is gained. The optimization process just confirms the expectations.
A great part of the parameter space is left unexplored and the question
of finding a better solution remains open.

If we want to be assured that no better point exists then the whole
parameter space has to be explored. One way to do this is to optimize
the circuit starting from several different initial points, and each opti-
mization run has to cover a different part of the parameter space. The
optimization process becomes a group of individual optimization runs.

Optimization methods have limited memory and therefore only a
few points from previous iterations are used to determine the next step.
Today computers easily store all the evaluated points, while the eval-
uation itself is still computationally expensive. Thus the initial point
for the next optimization run should be determined using the informa-
tion obtained from evaluated points. This paper proposes a heuristic
method based on the probabilistic approach [32]–[33]. The method
puts the new initial point in a part of the parameter space, where the
probability of finding a new minimum is high. It can be applied to mul-
tidimensional parameter space and does not require significant com-
puter effort.

Several minima are obtained in such an optimization process. The
designer can decide, which one is most appealing and may even con-
tinue with the investigation of the unexplored parts of the parameter
space. First the mathematical background of the assumptions used later
in the heuristic algorithm are highlighted. Several optimization cases
of CMOS integrated operational amplifiers are illustrated and the ob-
tained results are commented.

II. Mathematical Background, One Dimensional Probabilistic
Approach

Let us define a continuous positive stochastic process f(x; !). It as-
signs a positive function f(x) � 0 to every outcome ! 2 
 of exper-
iment �. The domain of ! is the set of all experimental outcomes 
,
and the domain of x is a set of real numbers <. The probability den-
sity function g(f0; x) is the derivative of the probability of an event
ff(x; !) � f0g. Because we defined a positive process we know that
g(f0; x) = 0 for f0 < 0.

Lets further say we have k pairs (xi; F (xi)); i = 1; 2; : : : k, named
known points. An event Zk occurs, when a realization of stochas-
tic process f(x) goes through all known points. In other words, the
event Zk is defined as ff(xi; !) = F (xi); i = 1; 2; : : : kg. It be-
comes certain if mean value m(x) is equal to the function value at all
known points and if variance �2(x) at those points is zero. Therefore
m(xi) = F (xi) and �2(xi)! 0 for i = 1; 2; : : : k.

Cost function F (x);x 2 A � <n; F : <n ! <+ of an opti-
mization problem is usually defined as a transformation from n di-
mensional closed and simply connected feasible region A into a pos-
itive number (zero included). If we constrain ourselves to one dimen-
sion then F (x) becomes F (x) and feasible region becomes an interval
A = [xlow; xhigh].

After one or more optimization runs the cost function has been eval-
uated at several points which were denoted as known points in the
paragraph above. Therefore cost function values F (xi) at parameter
values xi; i = 1; 2; : : : k, represents all the information we have at the
time. Let opt be the index of a point with the lowest cost function value
among known points (F (xopt) � F (xi); i = 1; 2; : : : k).

If mean value and variance have the properties mentioned above
then the event Zk always occurs. In this case every realization of the
stochastic process can represent the unknown cost function. Remind
that the probability density function of the stochastic process was not
defined yet.

The question is where to choose the new initial point for the
next optimization run, if the cost function is already known in k
points. A natural decision is to set it where the expected value
Efmin(F (xopt); f(x; !)) j Zkg is minimal. To find out a new start-
ing point x0 a minimization problem (1) has to be solved. The integral
definition of the expected value expresses the minimization problem
with the density function gmin(f0; x) of min(F (xopt); f(x; !)).

x0 = argmin
x2A

(Efmin(F (xopt); f(x; !)) j Zkg)

= argmin
x2A

�Z
1

�1

f0gmin(f0; x)df0

�
(1)

m(xi) = F (xi); �
2(xi)! 0; i = 1; 2; : : : k

Since min(F (xopt); f(x; !)) � F (xopt) we know that the probabil-
ity density gmin(f0; x) = 0 for f0 > F (xopt). Otherwise gmin(f0; x)
is equal to g(f0; x). It follows that

gmin(f0; x) = u(F (xopt)� f0)g(f0; x) +

+ Æ(F (xopt)� f0)

Z
1

F (xopt)

g(f; x)df (2)

where functions u(F (xopt) � f0) and Æ(F (xopt) � f0) represent a
unit step function and its derivative, a unit Dirac impulse, respectively
(Fig. 1). With inserting (2) into (1) we can obtain the equation (3).

x0 = argmin
x2A

 Z F (xopt)

�1

f0g(f0; x)df0 + F (xopt)

Z
1

F (xopt)

g(f; x)df

!
(3)

m(xi) = F (xi); �
2(xi)! 0; i = 1; 2; : : : k
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Due to the assumptions on mean value and variance any realiza-
tion of the stochastic process can represent the unknown cost function.
The probability density g(f0; x) is still an arbitrary function. In order
to solve the minimization problem (3) it has to be defined. In other
words, we have to finally define the last undetermined property of the
stochastic process.

Lets assume that the cost function is continuous in the neighbour-
hood of all known points (x 2 [xi � "i; xi + "i]; "i > 0; i =
1; 2; : : : k). Then inside those it can be a sample path of constrained
limited random walk wpos(x; !) = max(0; w(x; !)), where function
w(x; !) represents the unconstrained limited random walk also known
as Wiener process. The probability density function gnor(f0; x) of
Wiener process is normal with constant mean value and linearly in-
creasing variance. Wiener process is a continuous function of variable
x. Let our stochastic process be a constrained limited random walk
f(x; !) = wpos(x; !) inside all known point neighbourhoods. Then
in those areas its probability density function can be expressed as a
function of gnor(f0; x) (Fig. 1). The mean value mi(x) = F (xi) and
the variance �2i (x) = �jx � xij; � > 0, of gnor(f0; x) are different
in every neighbourhood (denoted by index i).

g(f0; x) = Æ(f0)

Z 0

�1

gnori(f; x)df + u(f0)gnori(f0; x) (4)

x 2 [xi � "i; xi + "i]; "i > 0
mi(x) = F (xi); �

2
i (x) = �jx� xij; � > 0

i = 1; 2; : : : k

The assumption of continuity in the neighbourhood of known points
does not place any physically unrealistic limitations on types of cost
functions, which result from in circuit design optimization problems.
Also note that mean and variance have the properties which make the
event Zk certain.

The probability density function is now defined in the neighbour-
hood of known points and not for a whole feasible region A. In the
neighbourhood of ith known point expression (3) which needs to be
minimized becomes a function of mean value and variance (5).

h(mi(x); �
2
i (x)) =

Z F (xopt)

0

f0gnori(f0; x)df0

+ F (xopt)

Z
1

F (xopt)

gnori(f; x)df (5)

x 2 [xi � "i; xi + "i]; "i > 0
mi(x) = F (xi); �

2
i (x) = �jx� xij; � > 0

Since gnori(f0; x) represents the normal distribution (5) becomes
a monotonically increasing function of mean value and monotonically
decreasing function of variance. Mean corresponds to the cost function
value at the ith known point and variance corresponds to the distance
from it. Because we are searching for the minimum in (3) the above
statements lead to two conclusions:

� first due to increase withF (xi) the new initial point x0 lies rather
closer to the known points with lower cost function value, than
to those with higher cost function value,

� due to the decrease resulting from jx � xij it lies away from all
known points so the distance to the nearest one is as large as
possible.

Both conclusions can be intuitively generalized to n dimensional pa-
rameter space. A simple heuristic method described in the following
section is based on this generalization.

III. A Heuristic Method for Finding New Initial Points

The second conclusion tells us, that a new initial point has to be some-
where in the parameter space, where the density of already evaluated
points is low. If it is low, then we expect the average distance between
two nearest points to be large in general. But we have to define how
to measure the density of known points. Let us divide the parameter
space into 2n equal subspaces (2n equal boxes). Let the density be
equal to the number of known points in a particular subspace, and let
it be constant across the whole subspace. A new initial point will be
chosen in the subspace with the lowest density.

The first conclusion on the other hand tells us, that the contribution
to the density is not always the same for all already evaluated points.
Those with lower cost function values should contribute less, than the
ones with higher cost function values. In the previous definition all of
them contributed one unit, regardless of the cost function value. There-
fore known points have to be weighted. Each point will contribute its
weight, which has to be proportional to its cost. Let the weight u of a
point with cost function value F be defined by equation (6).

u =
(� � 1)F + Fmax � �Fmin

Fmax � Fmin

(6)

Fmin and Fmax represent the lowest and the highest cost function
value among already determined points, respectively. The point with
the lowest cost function value has always weight one. The weight of
the point with the highest cost function value is given by coefficient
�, and now it contributes � times more to the density, than the lowest
point.

So far all known points, for which we know, that they violate im-
plicit constraints, are still not included in our definition of density.
They lack a cost function value F , so their weight can not be calcu-
lated by equation (6). But those points give us some information about
the cost function and therefore they have to be taken into account. We
set their weight to 2�.

Finally the heuristic algorithm for determining a new initial point
for the next optimization run is described in the repeat until loop (Fig.
2) below. The space is divided into 2n equal subspaces, until we find a
subspace with no points determined yet. A new initial point is selected
there randomly. The algorithm is very simple, so it demands only a
small amount of computational time.

IV. Sizing Problem Cases and Results

In this section three CMOS design cases are described to illustrate the
capabilities of the proposed approach. Two simple two-stage opera-
tional amplifiers with p and n-channel differential pair (Figs. 3 and
4) and a telescopic cascode operational amplifier (Fig. 5) were opti-
mized. Several versions of the above three sample circuits optimized
to meet different requirements were used as a part of larger mixed sig-
nal integrated circuits. The amplifiers were designed for and produced
in 0:3�m and 0:8�m technology. The optimized parameters were all
transistor channel dimensions (widths and lengths), MOS multiplier
factors and also the resistances and the capacitances.

The variations of circuit device (transistor, capacitor, resistor, etc.)
properties arising from the manufacturing process variations can cause
a circuit to fail to fulfil the design requirements. IC manufacturers de-
scribe process variations by means of so called corner models. Corner
models describe several extreme conditions, which may occur during
IC fabrication and result in some extreme circuit device behaviour. For
a CMOS process for instance worst power, worst speed, worst one,
worst zero etc. corner models of MOSFETs are provided. Usually a
typical or nominal model is also supplied. Beside corner models ev-
ery operating condition (supply and reference voltages, bias currents,
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temperature etc.) brings along a nominal value and at least two (mini-
mal and maximal) extreme values. A particular combination of corner
model and operating condition values is called a corner point. One
should keep in mind that the number of corner points is usually quite
large.

The idea of robust design as sometimes practiced by IC designers
relies on the assumption, that the circuit characteristics reach their ex-
treme values at extreme operating conditions and process variations.
In order to establish whether the design is robust, designers examine
the performance of the circuit for all corner points. If the circuit per-
formances are satisfactory in all relevant corner points then the design
is considered robust.

Device’s physical dimension tolerances have far smaller impact to
its properties than the manufacturing process and operating condition
variations. Therefore they are usually neglected. The only case when
dimension tolerances are important is mismatch analysis. In our cases
mismatch is simulated by slight transistor model variations of one of
the matching transistors.

The circuit characteristics that participate in the cost function are
listed in the upper part of Tables 1 and 2. The cost function for a single
corner point is formulated as a weighted sum which combines results
of several types of analyses. Including all circuit characteristics, which
are essential for the circuit design, into the cost function guarantees
that the optimization procedure searches for the most acceptable trade-
off among them. Therefore no single circuit property is individually
minimized or maximized. Due to the variety of circuit characteristics
several types of analyses have to be performed in order to calculate the
cost function. Global minimum of the cost function for a single cor-
ner point represents the tradeoff where the circuit has the most suitable
properties for that particular corner point.

Beside searching for an optimal nominal circuit in the nominal cor-
ner point the robustness is also taken into account. The information
about design robustness is included into the cost function. Since the
design is considered robust if it performs well in all relevant corner
points, the circuit characteristics are evaluated for those corner points
as well [12] and the corresponding terms are added to the cost function.
Therefore in each iteration of the optimization procedure the required
circuit analyses have to be done for the nominal operating and process
conditions and the relevant corner points. The cost function summa-
rizes all the obtained data into a single number which represent how
good and how robust a particular design is.

The shape of such a complicated cost functions in multidimensional
parameter space is completely unknown. Finding a global minimum
(the best robust tradeoff) is a difficult task for any optimization method
and circuit simulator since it requires many circuit analyses. Neverthe-
less we expect that somewhere in the parameter space there is a global
minimum which defines the optimal solution satisfying the given re-
quirements.

The results for the two-stage operational amplifiers are summarized
in Table 1 and for the telescopic cascode operational amplifier in Table
2. Only some of the optima found with the initial point set by the de-
scribed heuristics are given because of the tables size. The upper part
of both Tables contains nominal circuit performances. The lower part
summarizes parameter values in each minimum. Multiplying factor *
channel width / channel length (mw=l) ratio is given for some transis-
tors in all three cases. If short channel effects in submicron region are
neglected then the ratio defines a transistor. Therefore it is convenient
for estimating if two solutions are equivalent.

The optimization method used in a particular run is not essential.
In fact any local method can be used since global methods tend to the
global minimum regardless of the chosen initial point. Direct methods
are preferable since the derivatives of the cost function are not required
(often impossible to calculate without resorting to perturbation meth-
ods which are not accurate enough). So one can use any simplex, quasi

gradient (metric matrix, trust region etc.), heuristic, etc. based method.
In our experiments a heuristic simplex based method was used. The
cost function was composed as a weighted sum of deviations from the
target values for nominal and worst conditions. If a particular target is
fulfilled the optimization process does not tend to improve it any fur-
ther. Approximately 500 to 1000 circuit evaluations were needed for
one run to converge and on the average every third run was successful.
Thus the results in Table 2 were obtained in 30000 circuit evaluations.
Comparing this result to a performance of well known global optimiza-
tion methods like simulated annealing or genetic algorithms is encour-
aging since over 150000 circuit evaluations are needed to optimize a
circuit like the telescopic cascode amplifier.

From all presented cases we can see that many different solutions of
the circuit sizing problem exist. An interesting parallel can be drawn
with [34]–[35] where the entire circuit synthesis problem (topology
and sizing) was addressed by genetic programming. Uncommon cir-
cuit topology solutions were found beside well known ones.

More or less the same circuit properties can be obtained with sev-
eral different sets of circuit parameters. Two explanations are at hand:
1.) the target values are to loose for the used circuit configuration and
for the given technology and are easily fulfilled, or 2.) the optimization
run is stopped at different tradeoffs among given targets. Because all
requirements are never fulfilled the second explanation is more proba-
ble. To confirm this, the same experiments were repeated with tighter
targets. The requirements remained unfulfilled and individual solutions
didn’t merge.

A closer look at the Table 2 also confirms that the solutions rep-
resent tradeoffs among required targets. We can see for instance that
the last two results have complementary properties. While the solution
from column nine has low vpp, pm and am it has high ip and f0dB.
On the other hand the last circuit (column 10) has opposite properties.
The same observations can be made in Table 1.

V. Conclusion

A simple heuristic method for setting the initial points of individual
optimization runs was described. The idea is based on a one dimen-
sional probabilistic approach extended to multidimensional parameter
space. The main objective is to uniformly search the parameter space
with a sequence of optimization runs. Each run contributes some new
information about the cost function shape in the multidimensional pa-
rameter space. Different local minima are found, if they are present.
Multiple solutions are obtained providing additional insight into circuit
behaviour. The designer can decide which one is the most appropriate
and continues his/her work from there with finetuning. Finetuning is
usually necessary since the obtained minimum of the cost function not
necessarily satisfies the designer’s expectations. A statistical model of
the cost function was presented. The construction of cost function it-
self [12] is beyond the scope of this paper.

The method takes into account all collected cost function data.
Therefore all calculated points must be stored and some additional
MBytes of RAM are occupied for that reason. But on the other hand it
requires only a small computing effort and does not take a considerable
amount of time. The optimization method used in the individual runs
can be an arbitrary fast greedy (local) method. Fast convergence of
such methods ensures short runtimes since global methods (like sim-
ulated annealing or genetic algorithms etc.) have in general slow con-
vergence. More information is obtained instead of a single minimum.
Our method can try several different initial points in the time needed
by a global method to converge.
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g (f , x)nori 0
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g (f , x)min 0
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0 F(x ) F(x )opt i

Figure 1: Probability density functions of Wiener, stochastic and constrained stochastic
process for i 6= opt, x 6= xi and x in ith neighbourhood. The Dirac impulses at 0 and
F (xopt) represent definite integrals of gnor

i
(f0; x) from�1 to 0 and from F (xopt)

to1, respectively.

calculate weights for all known points;
temporary space := explicitly constrained space;

divide temporary space into 2 equal subspaces;
add up weights in particular subspaces;
temporary space :=

subspace with the lowest sum of weights;
lowest sum = 0

randomly pick new point in temporary space;

repeat

until

n

Figure 2: Symbolic algorithm of heuristic initial point determination for a new optimiza-
tion run.
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Figure 3: Operational amplifier with p-channel differential pair.
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Figure 4: Operational amplifier with n-channel differential pair.
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Figure 5: Telescopic cascode operational amplifier.
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Table 1
Results of some successful optimization runs for both two-stage amplifiers (0:8�m technology)

property target p-channel diff. pair n-channel diff. pair

A �m2 # 11619 12289 12241 10105 14151 13521 17706 14286
vpp V " 3:7 3:7 3:8 3:6 3:8 3:9 3:8 3:8
vpp=vinpp " 2101 2937 2153 2159 4535 4246 4232 4741
vo�set �V # 87 60 96 49 32 81 49 11
vouto�set mV # 201 199 198 199 99 101 100 100
ip �A # 727 636 674 559 689 828 754 659
f0dB MHz " 20 20 20 14 16 20 14 13
pm Æ " 37 37 31 23 34 40 55 37
am dB # �39 �37 �24 �22 �40 �32 �38 �40
CMRR dB # �96 �100 �91 �97 �108 �106 �104 �102
PSRRp dB # �89 �90 �112 �101 �49 �50 �46 �48
PSRRn dB # �62 �62 �60 �58 �50 �51 �51 �52
noise1=f nV=

p
Hz # 100 91 80 56 114 100 102 108

noiseterm nV=
p
Hz # 9:0 9:5 9:0 10:3 8:6 9:4 9:0 8:6

trise ns # 361 431 405 431 285 259 243 312
tfall ns # 174 134 171 216 479 426 440 582

transistor mw=l ratio
differential pair 173 141 200 151 130 117 41 154
active load 12 9 12 4 18 21 41 14
current source 18 24 18 7 19 10 31 39
Notations: A : : : area, vpp : : : peak-to-peak voltage, vpp=vinpp : : : dc gain, vo�set : : : offset voltage, vouto�set : : : symmetry, ip : : : cur-
rent consumption, f0dB : : : frequency at 0dB gain, pm : : : phase margin, am : : : amplitude margin, CMRR : : : common mode rejec-
tion ratio, PSRRp : : : power supply rejection ratio to positive terminal, PSRRn : : : power supply rejection ratio to negative terminal,
noise1=f : : : 1=f noise at low frequencies (at 100Hz), noiseterm : : : thermal noise at higher frequencies (at 100kHz), trise : : : rise time,
tfall : : : fall time, m transistor multiplier, w channel width and l channel length. Symbols " and # indicate that the desired value is as
high or as low as possible.

Table 2
Results of some succesfull optimization runs for telesopic cascode amplifier (0:3�m technology)

property target telescopic cascode operational amplifier

A �m2 # 2795 2605 2688 2603 2735 2706 3000 2686 2905 2479
vpp V " 3:0 2:7 2:9 2:8 2:8 2:9 2:8 2:8 2:3 3:1
vpp=vinpp dB " 133 139 135 135 137 134 135 135 136 135
cmfbo�setmV # 24 0:4 34 1 38 5 21 0:3 25 30
ip mA # 1:4 1:2 1:3 1:4 1:4 1:3 1:3 1:4 1:4 1:1
f0dB MHz " 242 260 269 263 250 261 268 273 305 171
pm Æ " 74 73 73 75 76 70 65 73 66 79
am dB # �25 �25 �26 �25 �28 �25 �20 �25 �24 �28

transistor mw=l ratio
main differential pair 290 350 290 290 230 350 530 290 410 230
auxiliary p differential pair 28 22 22 16 16 16 28 28 22 28
auxiliary n differential pair 14 20 8 8 11 14 11 20 11 11
Notations: A : : : area, vpp : : : peak-to-peak voltage, vpp=vinpp : : : dc gain, cmfbo�set : : : common mode feedback offset, ip : : : current
consumption, f0dB : : : frequency at 0dB gain, pm : : : phase margin, am : : : amplitude margin, m transistor multiplier, w channel width
and l channel length. Symbols " and # indicate that the desired value is as high or as low as possible.
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