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ABSTRACT

SPICE is a de-facto standard for free circuit simulation and the role model for most commercial simulators.
In this paper we present the SPICE OPUS circuit simulator which is based on the SPICE3 source code. The
shortcomings of the original SPICE3 and of its device models are highlighted. We present the solutions to these
shortcomings that were implemented in SPICE OPUS. Three promising open-source projects that do not resort
to SPICE3 source code are discussed: Gnucap, QUCS, and fREEDA.
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1. Berkeley SPICE

The last version of the Simulation Program with In-

tegrated Circuit Emphasis (SPICE) released by the

University of California, Berkeley (UCB) was ver-

sion 3f4 after which the development of the simula-

tor ceased. The publicly available source code was

picked up by various organizations and enthusiasts

which produced many different SPICE3 [1] based

simulators. SPICE OPUS [2] is one of them. The

process of creating it took us through the inner work-

ings of SPICE and revealed many bugs and short-

comings of the original SPICE 3f4.

The SPICE3 source code was written in C and

meant a great leap forward from SPICE2 (written

in FORTRAN) in terms of maintainability, most no-

tably in the area of adding new device models. Un-

fortunately the code was written by many develop-

ers which often failed to follow a common coding

practice and often bypassed the defined application

programming interface (API). The worst part of the

code is the built-in scripting language NUTMEG

which has many bugs, quick fixes, and incomplete

features. On the other hand the most clean part is

the sparse matrix library which is also used in many

other simulators.

2. How do they do it?

2.1 Writing down the equations, DC analysis

Simulating a circuit starts with writing down the

equations based on two Kichoff’s laws and the equa-

tions linking branch currents and voltages (branch

equations). The Kichoff’s current law (KCL) is ap-

plied to all nodes with the exception of the reference

node (ground). Most simulators today use node volt-

ages as independent variables in the equations. This

simplifies the Kirchoff’s voltage law (KVL) to sim-

ple relations linking every branch voltage to a pair

of node voltages.

KVL and KCL equations are linear and include

no derivative terms. The nonlinearity and the cir-

cuit’s dynamics are introduced by the branch equa-

tions. In the most commonly used approach to

writing down circuit equations the branch voltages

from KVL are substituted into branch equations.

All branch currents that can be expressed explic-

itly from the resulting branch equations are substi-

tuted into KCL equations. This leaves us with one

KCL equation per node (with the exception of the

ground node) and some additional branch equations

from which the current cannot be expressed explic-

itly (e.g. voltage sources). The variables in this non-

linear system are mostly node voltages and a few

additional branch currents. Assuming that the cir-

cuit’s elements are not time-dependent the following

system of equations is obtained.

f(x) + q̇(x) + j(t) = 0 (1)

where q̇ = dq/dt, x is the vector of variables, and f ,

q, and j are nonlinear vector-valued functions. DC

analysis assumes that all transients have died out

so the q̇(x) term is zero and j(t) is replaced with

a constant vector j0. This leaves us with a nonlin-

ear system of algebraic equations that can be solved

using the Newton–Raphson method.

2.2 Small-signal frequency-domain analyses

In the frequency domain (1) is first linearized in

the neighborhood of a given operating point x0 (i.e.



x(t) = x0 + δx(t)).

Gδx+ C ˙δx+ j(t) = 0 (2)

where G and C are the Jacobi matrices of f(x) and

q(x) at x = x0. After applying the Fourier transform

to (2) we get

(G+ jωC)ΔX + J = 0 (3)

where ΔX and J are the Fourier transforms of δx

and j(t). Applying the Laplace transform instead of

the Fourier transform to (2) results in an equation

similar to (3) which is the basis for the pole-zero

analysis. Equation (3) is also used in small signal

noise analysis where noise source spectral densities

are inserted into J .

2.3 Time-domain analysis

While solving (3) is a matter of a simple LU decom-

position and back substitution, the solution of (1)

requires the numerical approximation of the deriva-

tive terms which is also referred to as numerical in-

tegration. The solution to (1) is represented by a

sequence of approximate solutions xk which corre-

spond to discrete timepoints tk. The derivative term

q̇(tk+1) can be approximated as q̇k+1 by using the

following equation.

q̇k+1 =
A−1

hk
qk+1 +

N∑

i=0

Ai

hk
qk−i +

M∑

i=0

Biq̇k−i (4)

where tk+1 = tk + hk. hk is also referred to as

the timestep. M , N , and the coefficients Ai and

Bi are defined by the used integration algorithm

(e.g. for the n-th order Gear algorithm N = n and

M = 0). Note that the coefficients depend on the

past timesteps. They must be recalculated at every

timepoint if the timestep is not constant.

If (4) is substituted into (1) a nonlinear system of

algebraic equations is obtained. Solving this system

of equations yields the circuit’s approximate solution

at the next timepoint xk+1.

Approximation of q̇(tk+1) introduces an error (ε)

into qk+1. This error is also referred to as the local

truncation error (LTE) and is proportional to the

timestep (hk).

ε = Cn+1
dn+1qk
dtn+1

hn+1
k (5)

The error coefficient Cn+1 can be expressed with Ai,

Bi, and the timesteps hk, hk−1, ....

In predictor-corrector algorithms first the cir-

cuit’s response at tk+1 is predicted (e.g. by poly-

nomial extrapolation or explicit integration) and the

predicted response is used as the initial point for

the Newton-Raphson algorithm. This reduces the

number of Newton-Raphson iterations as well as en-

ables us to express the LTE in a more simple manner

(without resorting to the n+ 1-th derivative of q at

tk). If the order of the predictor matches the order

of the integration algorithm LTE can be expressed

as

ε =
Cn+1

Cn+1 − CP
n+1

· (qk+1 − qPk+1) (6)

where CP
n+1 is the error coefficient of the predictor

and qPk+1 is the predicted value of q(tk+1).

If the Newton-Raphson algorithm fails to solve

the nonlinear system of equations in the prescribed

number of iterations the timestep is reduced and the

order of the integration algorithm is set to 1. In

case of success the new timestep is calculated in such

manner that LTE is kept below a predefined bound.

If the new timestep sufficiently exceeds the previous

one the order of the integration algorithm can be

increased.

3. The creation of SPICE OPUS

3.1 Tightly coupled optimization

The original development of SPICE OPUS (up to

2000) was targeted at implementing optimization al-

gorithms for circuit optimization. In those days the

computers were much slower than today and the

overhead of starting an application and reading a

possibly long output file was significant (in 1997 on a

Pentium computer the overhead was around 500ms,

while on a modern computer it is merely 10ms).

Therefore the idea arose to tightly couple the

optimization algorithm with the simulator. This

meant extending the simulator with optimization al-

gorithms so that it does not have to be restarted with

a new input file every time the optimizer changes

some circuit parameter.

3.2 Memory leaks in SPICE3 code

The optimizer was implemented using the built-

in SPICE scripting language NUTMEG. The use

of NUTMEG quickly revealed its major downside:

memory leaks caused by bad programming at UCB.

The original SPICE3 was intended for interactive

use, but the developers at UCB did not anticipate

that an interactive simulator session would include

more than hundred simulations. The following sim-

ple program which repeats an empty loop 100 times



was eating up memory proportional to the number

of repetitions.

let const.n=0

while n lt 100

let const.n=const.n+1

end

Memory was allocated without freeing it later be-

cause it was easier for the programmers to skip any

cleanup actions. While this practice is harmless in

batch-mode simulation, it gradually eats up the all

available memory when several thousand simulations

are performed without restarting the simulator.

After cleaning up the simulator (removing the

memory leaks, fixing bugs, and completing incom-

plete features) we ended up with a robust and re-

liable simulator which was actually a by-product of

our developments in the area of circuit optimization.

The simulator quickly gained popularity due to its

stability and the fact that there was a Linux version

available.

3.3 XSPICE extensions

In 2000 we added the XSPICE extensions to SPICE

OPUS. The extensions simplify the process of adding

new device models to the simulator, albeit NOISE

and PZ analysis are not supported. It is also not pos-

sible to create XSPICE devices with internal nodes

(or variables for that matter). Another advancement

is the introduction of mixed-mode simulation.

In contrast to SPICE3 the XSPICE source code is

better organized. Despite the fact that XSPICE was

written by several developers the source code adheres

to common coding rules. XSPICE extensions are also

well documented.

3.4 Simulation of integrated circuits

In 2001 we started our first attempts at integrated

circuit (IC) optimization. The first things we had to

implement were the .include and the .lib state-

ment which are found in almost every process model

library available. We also had to implement a

mechanism for switching between multiple prede-

fined topologies and model libraries (the .netclass

netlist statement and the netclass NUTMEG com-

mand).

A much tougher nut to crack was the support

for parameterized subcircuits. The original SPICE3

code treats a subcircuit definition as a macro. Sub-

circuit instances are expanded resulting in a flat cir-

cuit which is subsequently parsed by the simulator.

Subcircuits are implemented as a preprocessing step

so implementing parameterized subcircuits that sup-

port interactive modification of parameters (i.e. by

using a NUTMEG command) required a rewrite of

the whole subcircuit handling code. NUTMEG was

used as the language for evaluating the parametric

expressions. The obtained values are substituted

into instance descriptions upon which descriptions

are parsed. This made it possible to keep most of

the parser code unchanged.

At the time the BSIM3 MOS model was used

in most process model libraries so we added BSIM3

and several other modern MOS models (e.g. BSIM3,

BSIM4, BSIM SOI, EKV, ...) to SPICE OPUS. Most

of them support the adaptation of MOS parameters

(e.g. the threshold voltage) to the dimensions of the

transistor channel (i.e. W and L). It is customary

that the whole feasible design space in terms of W

and L is divided into rectangular areas (bins) de-

limited by the values of Wmin, Wmax, Lmin, and

Lmax. Every bin has a separate model in the pro-

cess model library. As long as the values of W and L

cannot be changed interactively the selection of the

correct model (bin) for given W and L can be done

by a preprocessor. Because SPICE OPUS is inter-

active and the user can change the values of W and

L for every transistor, the mechanism for migrating

a MOS transistor instance from one bin to another

had to be implemented.

A common practice in IC design is connecting m

identical devices in parallel. For this purpose the M

parameter was added to all SPICE devices. It spec-

ifies the number of parallel instances. The imple-

mentation is fairly simple. In most cases the matrix

contributions have to be multiplied by M before they

are loaded.

Optimization of ICs requires many fairly complex

manipulations of the results for extracting perfor-

mance measures like bandwidth, phase margin, etc.

While other simulators implement these using dedi-

cated description languages (e.g. MDL and OCEAN

for SPECTRE, the .measure statement in HSPICE,

...) we had the advantage of a built-in language

(NUTMEG). With the implementation of facilities

for manipulating position markers associated with

waveforms (the cursorNUTMEG command and the

[%] operator) we obtained the equivalent of the post-

processing facilities available in other simulators.



3.5 Simulator convergence

During the many IC optimization runs with various

process model libraries we often ran into convergence

problems (i.e. failure to solve the nonlinear system

of equations with a limited number of iterations). In

such cases SPICE falls back to continuation methods

(homotopy methods). In SPICE3 both continuation

methods (GMIN stepping and source stepping) were

implemented incorrectly which resulted in an exces-

sive number of circuits not converging, even when

the number of available iterations (GMIN and source

steps) was increased. The problem was solved by re-

placing the fixed steps with adaptive stepping.

When continuation methods fail SPICE OPUS

attempts to solve the system using the damped New-

ton algorithm. One Newton step for solving f(x) = 0

can be written as:

xn+1 = xn − (df/dx)−1f(x) (7)

The second term is the update term which is re-

duced by a factor 0 < α < 1 when the damped algo-

rithm is used. The number of iterations required for

the algorithm to converge increases while the algo-

rithm becomes more robust and many problems on

which the original algorithm fails can now be solved.

A common way for obtaining the DC operating

point of troublesome circuits is to attach capacitors

to ground at every node and then gradually ramp up

all nonzero voltage and current sources while per-

forming a transient (time-domain) analysis. For sta-

ble circuits the signals converge to the DC operating

point after a sufficiently long simulation time. In

SPICE OPUS this approach is termed ”source lift-

ing”.

XSPICE also brings its own (näıve) approach

to solving convergence problems termed ”shunting”.

Shunting involves resistors that are connected from

every node to ground. If the resistances are large

enough the resistors improve convergence and the re-

sults are close to the true solution. This approach is

the equivalent of a single GMIN step.

Since there are several algorithms and simulator

parameters available for solving convergence prob-

lems a parameter tuning algorithm was implemented

in SPICE OPUS which automatically solves most

convergence problems.

3.6 Infinity, NaN, and other bugs

The only bug we found in the sparse matrix library

was associated with the inversion of denormalized

double precision floating point numbers. If one tries

to invert 10−320 the result is always infinite because

the largest possible double precision number is ap-

proximately 10308. Any values below 10−308 must

be treated as zero.

Infinite values are no problem per se, as long as

they get annihilated in operations like e−∞ or 1/∞.

A problem arises when ∞/∞ or 0 · ∞ occurs. The

result is ”not a number” (NaN). Once a NaN is ob-

tained it poisons every subsequent calculation which

also results in a NaN.

NaN values can also occur due to an optimiz-

ing compiler rearranging mathematical expressions

to save some computational time. Expressions not

written with floating point limits in mind can result

in infinite or NaN values when some extreme con-

ditions occur. This was the case with the BSIM3

model in Linux. Because we failed to identify the

source of the problem (debugging optimized code is

theoretically possible, but extremely hard in prac-

tice), the only solution was to compile the BSIM3

model without code optimization.

The code for determining the transient time step

had to be revised thoroughly. The calculation of the

LTE coefficients as well as the calculation of the LTE

was incorrect. Beside this there were several bugs in

the transient analysis that resulted in ”timestep too

small” errors.

Minor bugs were removed in various parts of the

simulator, e.g. setting of initial conditions, setting of

nodesets, breakpoint handling, etc.

3.7 The audience of SPICE OPUS

The largest part of SPICE OPUS’ audience comes

from educational institutions (38%). The reason for

this is probably the stability and the availability of

documentation and examples. 33% of users come

from research and development. A large part of

users (22%) uses SPICE OPUS for personal pur-

poses. There are also some government/military

users (1%). The rest of the downloaders (6%) didn’t

specify the line of work they are in.

4. Beyond SPICE

There exist several recompilations of the original

SPICE3 source code. All of them are plagued by the

same problems as SPICE3 is. The SPICE3 source

code is fairly open when it comes to adding new de-

vice models. Unfortunately the API for defining a

model requires the implementation of a separate ma-

trix loading function for every type of analysis. This



means that any new analysis (like harmonic balance)

that is added to SPICE3 simulators requires the im-

plementation of the analysis-dependent matrix load

function for every existing device.

Several individuals and groups have accepted the

challenge of designing and implementing an open-

source circuit simulator. In this section we limit our-

selves to open-source projects. Such projects have

the potential to spread the development beyond a

small and usually closed group of people. Even if the

original team stops the development an open source

project can easily be continued by some unrelated

team of people. We take a closer look at three such

simulators: GNUcap (ACS), QUCS, and fREEDA.

4.1 Gnucap (formerly ACS)

Gnucap [4] was started with the aim to implement a

circuit simulator in C++. Originally the project was

named ACS. The first version dates back to 1992.

The simulator supports DC, small signal AC, and

transient analysis. The API for model implemen-

tation is not very user-friendly when compared to

QUCS and fREEDA.

Gnucap has a model compiler which makes it pos-

sible to describe a device model in a more concise

manner. For instance the implementation of the

BSIM3 MOS model for the model compiler takes

2800 lines of code, while only the transient matrix

load function for SPICE3 is more than 3200 lines

long. The model compiler is oriented toward subcir-

cuit level modeling. No support for automatic differ-

entiation is available.

Latest developments enable Gnucap to include

standard SPICE3 device models with almost no

changes to the source code. This makes it possi-

ble for Gnucap to take advantage of the latest BSIM

models, since the implementation of these models for

the SPICE3 simulator is freely available.

Gnucap has built-in capabilities for event-driven

simulation and also supports mixed-mode simula-

tion. Unfortunately there are not many event-driven

device models available for Gnucap nor there is any

support for VHDL or Verilog.

Gnucap is a project that has been around for a

long time. The progress of the project seems to be

slow but steady. The device models are implemented

in a quite cryptic fashion and some good documen-

tation of simulator’s internal workings would be ex-

tremely welcome. The architecture of the simulator

is not very friendly when it comes to adding new

types of analysis. If Gnucap will rely on the source

code of SPICE3 BSIM models, it will become even

harder to add new types of analysis (e.g. harmonic

balance).

4.2 QUCS

The first version of the Quite Universal Circuit Sim-

ulator (QUCS) [5] was released in 2003. Although

QUCS is still in early stage of development it already

has many important features implemented. The sim-

ulator supports DC, small signal AC and noise anal-

ysis, transient analysis, and hopefully in the future

harmonic balance analysis.

Contrary to Gnucap QUCS does not derive its

device models from simpler base classes. Both

subcircuit-based device modeling as well as describ-

ing the devices with their respective matrix stamps

(like in SPICE3) are supported.

Every analysis has its own matrix load function

which introduces the many drawbacks of SPICE3.

Fortunately QUCS supports ADMS which can com-

pile a model described in Verilog-A to a C++ imple-

mentation using QUCS’ API. ADMS provides au-

tomatic differentiation which makes model develop-

ment much simpler than in Gnucap.

QUCS is still missing advanced MOS models

(e.g. BSIM). Theoretically one could use the pub-

licly available SPICE3 BSIM models since the basic

architecture and device modeling in QUCS are sim-

ilar to those found in SPICE3. Of course this would

bring the same disadvantages as it does in Gnucap.

Event-driven simulation is possible hrough the

use of FreeHDL and Icarus Verilog but at this point

QUCS does not support mixed-mode simulation.

There are also some drawbacks resulting from the

fact that QUCS is still in early stages of develop-

ment. The simulator does not use sparse matrices

which makes it questionable when medium and large

size circuits are simulated. Instead of using estab-

lished and verified standard mathematical packages

for solving linear and nonlinear equation systems,

Fourier transformation, etc. QUCS uses its own im-

plementations.

Compared to Gnucap QUCS has a more active

development team which is constantly improving the

simulator.

4.3 fREEDA

fREEDA [6] is a simulator with a significantly dif-

ferent approach than other simulators described in

this paper. The approach used for device modeling

is based on state variables. The system of equations



in fREEDA includes the state variables as well as

the node voltages. Unfortunately the way devices

are modeled in fREEDA complicates the implemen-

tation of charge-conserving models [3].

There is no support for ADMS, but on the other

hand the simulator supports automatic differentia-

tion through operator overloading. The way a new

device model is described is very straightforward and

concise (the BSIM3 model implementation takes less

than 800 lines of code).

The whole structure of fREEDA is oriented to-

ward modularity, which means that new analyses can

be added without the need to rewrite the device mod-

els. The simulator supports DC, small-signal AC,

transient, and harmonic balance analysis. C++ lan-

guage features are used for simplifying the implemen-

tation of device models and avoiding separate matrix

load functions for every type of analysis.

At the present there is no support for event-

driven and mixed-mode simulation in fREEDA.

fREEDA uses well established mathematical li-

braries for handling dense and sparse matrices, solv-

ing linear and nonlinear systems, Fourier transfor-

mation, etc. New releases of fREEDA are infrequent

(the last one is dated January 2009).

5. Conclusion

Despite its age SPICE3 is still the most popular

open-sorce simulator that supports the latest device

models. If, however, one needs a simulator that sup-

ports RF analyses, like the ones found in commercial

simulators, there is no real open-source alternative.

SPICE3 and its derivatives have some major

drawbacks. First of all the simulator code has many

bugs which are more or less successfuly fixed in

SPICE3 based simulators. The device modeling ap-

proach leaves little space for extending the simulator

with new kinds of analysis without rewriting or at

least extending the source code of all existing de-

vice models. SPICE3 is written in C and therefore

cannot take advantage of advanced language features

provided by C++.

Recent developments in the area of open-source

circuit simulation have brought fresh approaches to

the problem of designing a simulator. Most newly

developed simulators use C++ as the programming

language. C++ language features have great poten-

tial for reducing the amount of programming needed

for implementing a simulator.

The need for a more simple approach to device

model implementation has also been recognized. In

QUCS ADMS is used for compiling Verilog-A models

into C++ code. On the other hand fREEDA has a

thought-out API which greatly simplifies the imple-

mentation of device models.

An open-source simulator with a well defined API

for adding new models and analyses would bring sev-

eral benefits to electronic engineering community.

The separation of the models from the simulator

would make it possible to add new analyses with-

out the need to rewrite all existing device models.

This would give researchers a powerful platform for

developing new methods of analysis that would be-

come immediately available to anyone interested in

using them.
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