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Abstract

This paper presents a new asynchronous parallel global optimization method
and its application to the automated device sizing in analog integrated circuit
(IC) design. The method is based on the simulated annealing algorithm (SA),
but incorporates features from differential evolution (DE) to improve the
sampling efficiency and avoid the problems involved with the cooling schedule
selection. A simple local search procedure is also incorporated to improve
the fine tuning capabilities of the method. To reduce the optimization time,
the method is designed as an asynchronous master-slave parallel system that
allows simultaneous evaluation of several trial solutions. Comparison with
simple SA and DE on a set of well known analytical test functions confirms
the method’s efficiency. The parallel efficiency of the method is also verified
by optimizing the functions with 1, 2, 4, and 8 processors. The proposed
approach is also applied to several real world cases of device sizing in analog
IC design. The optimization results indicate that the method is capable
of finding near optimal circuits. The parallel efficiency of the method is
confirmed with optimization runs on 1, 2, 4, and 8 processors.
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1. Introduction

Global optimization problems arise in almost every field of scientific re-
search, engineering, chemistry, economy, etc. Many real world problems can
be formulated as global optimization problems of the following form:

x∗ = argminx∈S f(x) (1)

f : S → R

S =
{
x, x ∈ R

Nv , li ≤ xi ≤ ui, i = 1, ...Nv

}

where f(x) is the so-called cost function (CF), x is an Nv-dimensional vector
of optimization variables, and li and ui are the lower and the upper bound
for the i-th variable, respectively. x∗ denotes the global minimum of the CF.
In this paper we only consider problems with simple box constraints.

In practical applications the actual shape of the CF is usually unknown.
Often the CF values are the result of expensive and time consuming measure-
ments or simulations. In such cases problem (1) can’t be solved analytically.
Many different classes of optimization methods have been developed to solve
the problem numerically. Gradient methods are the fastest, but they require
the derivatives of the CF and work only on differentiable functions. They
are also extremely local by nature and sensitive to noise. This reduces their
suitability for many practical applications. The alternative to the gradient
methods are the direct search methods. They do not require gradients of the
CF and can handle noisy and multimodal functions. Optimization methods
can also be classified as local or global. The former are designed to find a
minimum as fast as possible, even though it may not be the true global min-
imum. The latter are usually slower but can find the true global minimum
with high probability. There are also many different hybrid methods that
try to exploit the fast convergence of the local methods and the global search
capabilities of the global methods [1, 2, 3, 4, 5, 6].

The basis of the method presented in this paper is a hybrid method
(DESA)[7] that combines simulated annealing (SA) and differential evolution
(DE). The random sampling and the Metropolis criterion from SA [8] are
combined with the population of points and the sampling mechanism from
DE [9] to balance global and local search. We extend DESA so that it can
be run in parallel on a cluster of computers. The new method is referred to
as Parallel Simulated Annealing Differential Evolution (PSADE).

2



The paper is organized as follows. In sections 2 and 3 the simple SA and
the basic DE algorithms are summarized. Section 4 presents a brief classifi-
cation of parallel optimization approaches. In section 5 PSADE is presented
in more detail. Section 6 compares PSADE with the original DE and sim-
ple SA on a set of 23 well known mathematical test functions. In section 7
PSADE is applied to the problem of device sizing in analog integrated circuit
(IC) design. Section 8 gives the concluding remarks.

1.1. Notation

We use U(1, N) to denote a uniformly distributed random integer from
{1, 2, ..., N}, and U(0, 1) to denote a uniformly distributed random number
from the (0,1) interval. Superscripts denote different vectors, while subscripts
denote vector components. Parentheses are used to denote iteration numbers.
xi
n(k) for example denotes the n-th component of the i-th vector in k-th

iteration.

2. Simulated annealing

SA is a very popular stochastic sequential global optimization algorithm
that performs random sampling of the search space [8]. Its main feature is
the so-called Metropolis criterion that occasionally allows the acceptance of
inferior solutions. The probability of making the transition from the current
point xc to a trial point xt generated by randomly perturbing xc is defined
as:

P = min(1, e−
f(xt)−f(xc)

T ) (2)

where f(xt) and f(xc) denote the CF values at xt and xc, respectively. SA
always accepts trail points with lower CF value, while the probability of
accepting inferior points is controlled by the temperature parameter T . For a
high value of T this probability is close to one. During the annealing process,
T is reduced according to some predefined cooling schedule, which decreases
the acceptance probability for low quality solutions. This mechanism allows
the method to escape from a local minimum when T is large and to fine tune
the solutions when T is small.

SA has a few drawbacks. In order to guarantee convergence to a global
minimum, careful selection of the sampling mechanism and the cooling sched-
ule is required. In [10] for example, several convergent versions of SA are
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derived. In practice however such algorithms are usually too slow and ineffi-
cient. Often modifications are required that sacrifice global convergence for
speed. This way acceptable results can be obtained in a reasonable amount of
time. The optimal sampling mechanism and cooling schedule depend on the
problem and finding them is not a trivial task. If the cooling schedule is too
fast, SA gets trapped in a local minimum. If it is too slow, the optimization
takes too much time.

In our implementation of SA the initial temperature was determined by
the maximal CF difference of 100 random initial points. We allowed 2 · Nv

steps in every temperature stage. Trial steps were generated independently
for every optimization parameter according to the Cauchy probability distri-
bution (3) with range parameter R:

p(ri) =
R

π · (ri2 +R2)
, i = 1, 2, ...Nv (3)

To simplify the implementation all optimization parameters are normal-
ized to the [0,1] interval so only one R parameter is needed. Its initial value is
set to 1. SA was run with a predefined limit on the number of CF evaluations
(CFE). The temperature and range cooling coefficients were determined sep-
arately so that T (R) reached Tmin = 10−10 (Rmin = 10−6) when the CFE
limit was reached. This setup does not guarantee the convergence to the
global minimum but allows SA to reach the fine tuning stage (where T and
R are small) even for those cases where the initial temperature must be set
to a very large value.

3. Differential evolution

DE is another very popular optimization method. Unlike the serial SA,
DE uses a population of Np points to guide the search process [9]. In its
various forms DE has been applied to many real world problems (e.g. [11, 12,
13, 14]). In our experiments we used the scheme classified as DE/rand/bin
[9]. Algorithm 1 represents the used DE algorithm.

f and px denote the weight factor and the crossover probability. nx en-
sures that at least one component of xm is used in the trial point xt. DE
also has some drawbacks. The user is required to provide f and px, which
are problem dependent and difficult to determine. The distribution of trial
points depends on the distribution of the population, thus the search radius
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Algorithm 1 Differential evolution

Initialize population
k := 0
while stopping conditions not met

for i := 1, 2, ...Np

a := U(1, Np),b := U(1, Np),c := U(1, Np), a �= b �= c �= i
xm := xa(k) + (xb(k)− xc(k)) · f
nx := U(1, Nv)
for n := 1, 2, ...Nv

if U(0, 1) < px or n = nx

xt
n := xm

n

else
xt
n := xi

n(k)
end

end
if f(xt) < f(xi(k))

xi(k + 1) := xt

else
xi(k + 1) := xi(k)

end
end
k := k + 1

end
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is limited to a region around the current population. If the entire popu-
lation converges to a neighborhood of a local minimum, DE can no longer
sample points far from that region. The greedy selection that only allows
superior solutions to reach the next generation also prevents the population
to gradually climb out of a local minimum.

The values of DE parameters used in our experiments are based on the
values suggested in literature [9, 15]. We used Np = 100, F = 0.5, Px = 0.9.

4. Parallel optimization methods

In many practical applications the computationally most expensive part
of the optimization is the CF evaluation. Since the number of CF evalu-
ations (CFE) required to obtain high quality solutions is often very large,
the entire optimization can take a very long time. Parallel methods are ca-
pable of distributing the workload among several processing units and can
achieve considerable speedups when compared to sequential methods. There
are two major approaches to parallelization, synchronous and asynchronous.
The main feature of synchronous methods are the so-called synchronization
points. When a worker reaches a synchronization point it stops and waits
until all workers have reached that point. This means that workers must
wait for the slowest worker. When the CF evaluation times vary consider-
ably, such idle time can seriously affect the achievable speedup. Idle time
can be avoided by using the asynchronous approach where workers do not
wait for each other. When a worker finishes a task, it reports the results and
immediately starts a new task.

Another classification of parallel methods is based on the type of commu-
nication. In master-slave (MS) configuration a single processing unit called
the master controls the optimization and distributes the workload among
workers. There is no direct communication between workers. In peer-to-peer
(P2P) configuration all workers are in constant communication so there is
no need for a master process. MS systems are easier to implement and re-
quire less communication between processing units, but are sensitive to the
response time of the master. P2P systems are more complex and robust, but
they require more communication between workers and are more difficult
to implement. The proposed hybrid method operates in asynchronous MS
configuration.
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5. Parallel Simulated Annealing Differential Evolution - PSADE

With PSADE we wish to improve the random sampling of SA with some
kind of memory that would allow more efficient sampling of the search
space. We replace the serial random search of SA with the population
of Np points and augment the random sampling with a mechanism simi-
lar to the original DE. To avoid the difficulties regarding the selection of
problem dependent DE parameters (weight factor f and crossover proba-
bility px), PSADE assigns different parameter values to every population
member (F i, PX i, i = 1, 2, ...Np). The method modifies these values dur-
ing the optimization in order to adapt to the specifics of the problem at
hand. To avoid the selection of the cooling schedule for SA, PSADE as-
signs a different constant temperature and constant random sampling radius
(T i, Ri, i = 1, 2, ...Np) to every population member. In every iteration an
individual is selected from the population and its T and R values are used in
the process of trial point generation and acceptance (Metropolis criterion).
The temperature and random step length changes are achieved by exchanging
the values of T and R between population members. PSADE also includes
a simple local search mechanism to speed up the convergence. To simplify
the implementation of PSADE, all optimization variables are normalized to
the [0,1] interval. The following sections provide a detailed description of
PSADE.

5.1. Parallel asynchronous implementation

PSADE uses the asynchronous MS configuration of workers to parallelize
the search process. It was implemented in MATLAB. Communication be-
tween the master and the slaves is handled by the DP toolbox [16], that uses
the PVM message passing library [17]. The master process maintains the
population and all parameters. It is responsible for trial point generation,
the acceptance of the evaluated points into the population (Metropolis crite-
rion or greedy acceptance if local step was performed), selection of the search
direction for local step, and the termination of the optimization. Algorithm
2 depicts the master process. The slaves perform a single CF evaluation or a
one-dimensional local step depending on the instructions received from the
master.

5.2. User input

The user must provide the population size Np, the minimal temperature
Tmin, and the minimal random sampling radius Rmin. In the experiments
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Algorithm 2 PSADE - Master Process

initialization
for all slaves

generate a trial point and request CF evaluation from slave i
mark slave i as busy

end
while stopping condition not satisfied

wait for fresh result
let i denote the slave that returned the result
mark slave i as idle
if slave performed local step

greedy acceptance
else

metropolis acceptance
if local step needed

select direction
request local step from slave i
mark slave i as busy

end
end
if slave i is idle

generate a trial point and request CF evaluation from slave i
mark slave i as busy

end
end
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these parameters were set to Np = 20, Tmin = 10−10, Rmin = 10−6. The
algorithm also requires two probabilities. τ1 denotes the probability of a
local one-dimensional step after the verification of the Metropolis criterion
and τ2 denotes the probability of adapting the parameters for trial point
generation. Their default values are τ1 = 0.01 and τ2 = 0.1.

5.3. Initial population

The initial population can be chosen randomly. PSADE uses the Latin
hypercube approach to ensure that the entire search space is uniformly cov-
ered by the initial population. First the feasible range for every variable is
divided into Np equal subintervals. Np points are then randomly generated
so that every subinterval for every optimization variable is included in the
initial population. The values of parameters inside subintervals are chosen
randomly.

5.4. Initial parameters of the method

The temperature and the random sampling radius are initialized in the
following way:

ct =
1

Np−1
· log(Tmax

Tmin
) (4)

T i = Tmax · e−ct·(i−1), i = 1, 2, ...Np

cr =
1

Np−1
· log(Rmax

Rmin
)

Ri = Rmax · e−cr·(i−1), i = 1, 2, ...Np

Tmax is the maximal temperature. It is set to the CF difference between the
worst and the best point in the initial population. Rmax is set to one.

5.5. Trial point generation

First two randomly selected individuals (denoted by i1, i2) compete for
better T and R parameters. They exchange their T and R values with the
following probability:

PT = min(1, e(f(x
i1 )−f(xi2 ))·(1/T i1−1/T i2 )) (5)

where yi1, yi2 denote the CF values of the two individuals, and T i1, T i2 denote
their temperatures. The mechanism tries to assign low T and R to individuals
with small CF values while still allowing the opposite from time to time.
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After competition, one of the individuals is selected to control the gener-
ation and the acceptance of the trial point into the population. The prob-
ability (P i

S) that the i-th individual is selected as the controlling individual
(denoted by superscript ic) is based on rank ordering. Individuals with small
CF values have smaller rank and higher probability of being selected:

P i
S =

e−ri

∑Np

i=1 e
−ri

(6)

where ri denotes the rank of the i-th individual ranging from 1 to Np. Com-
bined with the competition described in the previous paragraph, this mecha-
nism ensures that low T and R are used more often which indicates exploita-
tion of promising regions. It is possible, however, that individuals with low
CF values have large T and R. It is also possible that an individual with
large CF value is selected to control the search. In both cases large T and
R values are used which enhances global search and allows the method to
escape from local minima.

In every iteration a single individual (denoted by it) is selected randomly
as the target for replacement. In the original DE the user must provide the
crossover probability px and the weight factor f (e.g. px = 0.9, f = 0.5).
Since these values are problem dependent and are difficult to select in prac-
tice, PSADE assigns a separate set of parameters (F i, P i

X , i = 1, 2, ...Np) to
every individual. These values can be adapted during the optimization. The
values that are used in trial point generation are determined in the following
way. In most cases the it-th individual’s P it

X and F it value take the role of
px and f . It is also possible (with some small probability τ2) that px and
f are chosen randomly from the [0.1,0.9] and [0.5,1.5] interval, respectively.
If the generated trial point is accepted into the population by the Metropo-
lis criterion, the used control parameters replace the existing values of the
it-th individual (F it, P it

X). This allows the method to automatically find the
parameters that produce acceptable solutions.

A trial point xt is generated by combining the random step of SA with the
DE operator. In contrast with the original DE, PSADE uses two differential
vectors to obtain the mutated point. The random step is generated indepen-
dently for every optimization variable according to the Cauchy probability
distribution. The range parameter of the selected controlling individual (Ric)
determines the random search radius. The random step increases population
diversity and allows the method to escape from local minima, while the DE
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operator exploits the knowledge accumulated by the entire population to
guide the search process. The pseudo code is depicted by Algorithm 3.

Algorithm 3 Generation of xt

a := U(1, Np)
xm := xa

for id := 1, 2
b := U(1, Np),c := U(1, Np), b �= c
α := U(0, 1) · f
xm := xm + (xb − xc) · α

end
for i := 1, 2, ...Nv

if U(0, 1) < px
xt
i := xm

i

else
xt
i := xit

i

end
xt
i := xt

i +Ric · tan(π · (U(0, 1)− 1/2))
if xt

i > 1 or xt
i < 0

xt
i = U(0, 1)

end
end

5.6. Local search

Any kind of local search procedure can be applied to improve the conver-
gence speed of global optimization methods. PSADE performs a local step
with fixed probability τ1 after the acceptance criterion for it-th individual is
checked. The local step is always performed if xit is the best individual in
the population. In the local step stage PSADE constructs a one-dimensional
quadratic model function using three collinear points. The master first ran-
domly selects two population members (denoted by a and b). They define
the search direction d = xa − xb. The starting point xit and the direction d
are sent to a slave that must select two additional points xL1 and xL2. xL1

is obtained as:

xL1 = xit + U(0, 1) · d (7)
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If f(xL1) < f(xit), xL2 is obtained as:

xL2 = xL1 + 2 · U(0, 1) · d (8)

otherwise it is obtained as:

xL2 = xit − 2 · U(0, 1) · d (9)

Any point violating the box constraints is repeatedly contracted toward
xit (by halving its distance) until the violation is resolved. With three
collinear sample points (xit, xL1, and xL2), the one-dimensional quadratic
model function is constructed. If the model function is not convex, the best
of the three sample points is returned to the master. Otherwise the minimum
of the model function xm is calculated. If xm violates box constraints it is
repeatedly contracted toward xit until the violation is resolved. The point
with the lowest CF value among xit, xL1, xL2, and xm is then returned to
the master.

5.7. Acceptance criterion

Once the slave reports its results back to the master, the acceptance cri-
terion is applied. Greedy acceptance is applied to local steps. For all other
steps the Metropolis criterion (2) is used. The temperature of the controlling
individual (Tic) determines the probability of accepting inferior solutions. An
exception is the case when the target individual is the best point in the cur-
rent population. In this case the temperature used in the Metropolis criterion
is set to 0 which ensures that the best point can only be replaced by superior
solutions. Such elitism is necessary to ensure probabilistic convergence to
the global minimum.

Beside replacing the population members, PSADE also uses the Metropo-
lis criterion to search for DE parameters that produce acceptable solutions.
If the trial solution is accepted, the DE parameters of the it-th individual
are replaced with the values selected in the parameters selection phase (i.e.
P it
X = px, F

it = f).

5.8. Convergence

Global convergence of PSADE can be derived in a similar manner as for
DESA [7]. The positive random sampling radius ensures that no part of
the parameter space is completely excluded from the search process. The
positive temperature allows PSADE to climb out of local minima in order to
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Table 1: Comparison of PSADE, DE, and SA.

Nv f∗ CFEmax fmin-SA fmin-DE fmin-PSADE

f1 30 0 100000 9.99e-06 5.29e-08 3.32e-13
f2 30 0 100000 1.39e-03 2.39e-04 1.85e-02
f3 30 0 100000 3.88e-04 30.41 8.71e-01
f4 30 0 100000 1.80e-03 3.64e-01 1.06e-02
f5 30 0 100000 98.11 22.41 19.67
f6 30 0 100000 0 0 0
f7 30 0 100000 1.66e-02 1.38e-02 7.83e-03

f8 30 -12569.5 100000 -11858.9 -4980.45 -12569.5
f9 30 0 100000 8.95 190.75 2.59e-03
f10 30 0 100000 1.70 5.54e-05 3.26e-05
f11 30 0 100000 4.64e-02 1.64e-07 1.05e-10
f12 30 0 100000 2.43e-08 2.38e-09 2.28e-17
f13 30 0 100000 3.51e-07 2.50e-08 1.74e-16

f14 2 0.998 20000 0.998 0.998 0.998
f15 4 3.075e-04 30000 1.520e-03 3.075e-004 3.203e-04
f16 2 -1.0316 20000 -1.0316 -1.0316 -1.0316
f17 2 0.398 20000 0.398 0.398 0.398
f18 2 3 20000 3 3 3
f19 3 -3.863 20000 -3.863 -3.863 -3.863
f20 6 -3.322 20000 -3.239 -3.310 -3.322
f21 4 -10.153 20000 -4.826 -10.153 -10.153
f22 4 -10.402 20000 -5.294 -10.402 -10.403
f23 4 -10.536 20000 -6.189 -10.536 -10.536

find better solutions. The acceptance criterion ensures that the best point
in the population can only be replaced by an even better solution. With all
these features it is possible to show that PSADE can find the true global
minimum of the CF with probability 1.

6. Optimization of mathematical functions

To examine the performance of PSADE, a set of 23 well known mathe-
matical test functions was used. The definitions of the test functions can be
found in [18]. The set contains unimodal and multimodal functions with
dimensionality ranging from 2 to 30.

Table 1 shows the optimization results for SA, DE, and PSADE with a
limited number of CF evaluations (CFEmax). Every function was optimized
10 times with different random seeds. For every test function the table lists
the number of variables (Nv), the known global minimum (f ∗), the CFE limit
(CFEmax), and the average minimal CF value fmin for SA, DE, and PSADE.
The results indicate that no method outperforms all others on all functions.
For the unimodal functions f2 − f5 and for the deceptive f15 PSADE had
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Table 2: Parallel performance of PSADE.

f∗ fstop t1 (CFE) S2 S4 S8

f1 0 1e-10 1180.9 (60487) 2.2 5.8 7.9
f2 0 0.1 904.7 (46507) 1.8 5.2 8.7
f3 0 15 1325.9 (67744) 2.3 4.6 7.8
f4 0 0.1 1327.6 (68219) 1.9 3.8 7.4
f5 0 30 686.1 (35251) 1.8 3.6 6.2
f6 0 0 344.5 (17699) 2.0 4.2 8.1
f7 0 0.02 705.9 (36311) 2.0 4.0 8.2

f8 -12569.5 -12569.5 735.8 (37694) 2.0 4.1 8.1
f9 0 0.1 1621.7 (83334) 2.1 4.1 7.9
f10 0 1e-04 1032.9 (53038) 1.9 5.4 7.8
f11 0 1e-09 1537.6 (78767) 2.1 6.1 7.6
f12 0 1e-10 988.6 (50701) 2.0 4.0 7.5
f13 0 1e-10 1060.6 (54261) 1.9 4.2 7.7

f14 0.998 0.998 13.9 (714) 1.0 2.6 5.9
f15 3.075e-04 4e-04 358.0 (18462) 1.8 3.3 8.2
f16 -1.0316 -1.0316 19.1 (985) 2.3 3.8 8.8
f17 0.398 0.398 16.5 (846) 3.1 4.7 10.9
f18 3 3 76.3 (3946) 1.9 3.7 7.8
f19 -3.863 -3.863 10.6 (547) 2.2 3.5 6.2
f20 -3.322 -3.322 56.8 (2928) 1.4 3.5 5.1
f21 -10.153 -10.153 160.1 (8229) 2.1 3.4 8.0
f22 -10.402 -10.402 130.8 (6749) 1.5 3.8 7.1
f23 -10.536 -10.536 151.2 (7753) 1.8 3.2 8.1

problems fine tuning the solution and would require more CFE. Since it is
a global stochastic method that uses random search, this is not surprising.
For the remaining functions, however, PSADE produced solutions that are
better or at least as good as solutions found by SA and DE. The results are
especially encouraging for the most difficult highly multimodal functions f8−
f13. PSADE produced results in close proximity of the corresponding global
minima and by far outperformed SA and DE on these functions. This makes
it appropriate for use in areas such as parameter fitting [19] and training of
neural networks [20].

To test the parallel performance of PSADE, every function was optimized
10 times (with different random seeds) using 1, 2, 4, and 8 slaves. Runs with
a different number of slaves were started with the same random seed and
consequently with the same initial population. To simulate the variations of
the CF evaluation time and the communication overhead, an artificial ran-
dom delay between 10 and 20 milliseconds was added to every CF evaluation.
The optimization results are presented in Table 2. The table lists the known
global minimum (f ∗) and the target CF value (fstop). t1 denotes the aver-
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age time in seconds required to reach fstop when a single slave is used. The
corresponding average number of required CFE is given in parentheses. For
runs with 2, 4, and 8 workers the speedups (S2, S4, S8) with respect to the
run with a single worker are given. The speedup is defined as:

Si =
ti
t1

i = 2, 4, 8 (10)

where ti denotes the average time required to reach fstop, when i slaves are
used. PSADE reached fstop in all runs for all test functions.

It is evident that the asynchronous parallel approach can result in con-
siderable speedups when the number of processors is increased. Due to the
stochastic nature of PSADE it is unrealistic to expect the same speedups for
all functions or even for several runs with the same function. It is possible
that a run using multiple slaves finds the minimum with fewer CFE that a
run using a single slave. Combined with parallel evaluation of trial solutions,
this can lead to speedups greater than the number of slaves. In contrast
it is also possible that the run using a single slave finds the minimum using
fewer CFE, which can result in speedups that are smaller than the number of
slaves. On the average, however, the results confirm that PSADE is capable
of successfully exploiting multiple processors to speed up the optimization.

7. Optimization of analog integrated circuits

Analog IC design is a very difficult and time consuming task. It consists of
two major steps. The first step is the selection of the circuit topology which
depends mostly on the knowledge and the experience of the designer. In the
second step, referred to as parametric optimization the device parameters
(transistor dimensions, capacitances, resistances, etc.) must be determined
so that the final circuit satisfies the design requirements. In this paper we are
only concerned with the parametric optimization of the ICs and we assume
that the topology is fixed.

There are several ways to evaluate the performance of analog ICs. In [21,
22], for example surveys of analog synthesis strategies are presented, and in
[23, 24] the authors present an overview of more recent design methodologies
for the design of large systems on chip. The methods involve the extraction
of nonlinear macromodels of the circuits which are then used to evaluate the
circuit performance. In this paper we use an approach more similar to [25].
We use the external SPICE OPUS circuit simulator [26] that performs full

15



g g+ng-n

p

-t

0

f(m)

m

Figure 1: Penalty function example.

device model circuit simulation. This results in accurate values of circuit
performance measures but is also very time consuming, so it can only be
used for medium sized circuits.

7.1. The cost function

In analog IC design there are usually several conflicting design goals (e.g.
gain, speed, size, power consumption, noise, etc.) and a large number of
optimization variables. Multiobjective optimization methods (e.g. [27, 28])
are one way to handle all design goals simultaneously but have so far mostly
been used for problems with 2-3 objectives. In IC design this is rarely enough.
In the present work we use the penalty function approach [29] that combines
all the specified design goals into a single real valued function. All deviations
of the performance measures from their specified target values are penalized
and result in an increase of the overall CF value. Figure 1 depicts an example
of a penalty function for a performance measure m. The goal (target value)
g, norm n, penalty factor p, and tradeoff factor t determine the shape of the
function.

In order to obtain robust circuits we also consider the problem of vary-
ing environmental conditions (e.g. the temperature, supply voltage, device
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model parameters, etc.) by simulating the circuits across several corners [29].
Every corner represents a combination of these parameters. The corners are
usually selected so that they represent the most extreme combinations of the
environmental conditions. If the circuit achieves the design specifications for
the worst environmental conditions, it is likely that it will perform at least
as well under normal conditions. For every corner a separate circuit simula-
tion is required and a separate penalty function is constructed. The corner
with the largest penalty value determines the contribution of a particular
performance measure to the final CF value:

CF =
Nm∑

i=1

max
j=1,2,...Nc

fi,j(mi,j) (11)

where Nm and Nc denote the number of measurements and corners, respec-
tively. Cases with numerous corners are usually much more difficult to opti-
mize and also take considerably more time.

In our experiments we ignored some other important aspects of analog IC
design, such as worst case and mismatch issues, yield estimation, and layout
issues (e.g. [30, 31, 32]). These can be included in the existing framework
as separate analyses and measurements but the corner analysis employed in
this paper should be sufficient to test the performance of PSADE on real
world problems.

7.2. Test cases

PSADE was tested on several real world cases of analog IC design. We
present the detailed case setup and detailed optimization results only for the
first two cases (AMP and AMP5C). Both cases deal with the same circuit
topology depicted in Figure 2. It is an amplifier circuit with 27 optimization
parameters (variables):

RR2,RR3,RR4 → 3 resistances
CC1,CC0 → 2 capacitances
NM0=NM1 → width and length
NM3=NM5=NM7=NM8 → width and length
PM0=PM1 → width and length
PM2=PM3=PM5=PM10 → width and length
PM9=PM11 → width and length
NM2,NM4,NM6,PM4,PM6,PM7 → 6 × (width and length)
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Figure 2: Topology for the AMP and the AMP5C test case.

Table 3: AMP5C - corner parameters.

corner temperature [oC] supply voltage [V] device models

typical 27 1.8 nominal PMOS,NMOS
ff 50 2.0 fast NMOS,PMOS
ss 0 1.6 slow NMOS,PMOS
ffx 0 1.6 fast NMOS,PMOS
ssx 50 2.0 slow NMOS,PMOS

where NM0=NM1 indicates that transistors NM0 and NM1 should be
matched (identical in size). In the AMP case we consider a single nominal
corner with typical device model parameters, T = 27oC, and Vdd = 1.8V.
The AMP5C case deals with 5 different corners in order to obtain a more
robust circuit. The parameters for all 5 corners are given in Table 3.

The case setup was the same for both cases. Table 4 describes all 15
design requirements with their target values, norm and penalty factors that
are used to construct the penalty functions. The tradeoff factors were all set
to 0. The table also contains the performance measures at the final solution
found by PSADE for both cases.

For the AMP case PSADE was able to find a solution that satisfies all
design requirements except the output swing requirement, which was slightly
below the desired value. The optimization of the AMP5C case is more dif-
ficult. The unfavorable environmental conditions affect the circuit perfor-
mance and the output swing of the final circuit was 0.58V below the de-
sired value. Additionally, the required DC gain and fall time were also not
achieved. Other design requirements were satisfied.

The remaining cases will be described more briefly. The circuit topology
for the BUFF and BUFF5C cases is depicted in Figure 3. Both cases con-
sider the same circuit with 36 optimization variables, and 13 design goals.
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Table 4: Test cases AMP and AMP5C: setup and results.

Property Goal norm penalty fmin,AMP = 0.063 fmin,AMP5C = 1.900

area [m2] < 1e-08 1e-09 1 7.418e-09 5.23e-09
isupply [A] < 1e-03 1e-05 3 4.40e-04 5.30e-04
acgain [dB] > 70 70 5 71.20 73.58
ugbw [Hz] > 5e+06 5e+06 3 6.52e+06 7.97e+06
bw [Hz] > 500 500 1 1074.30 1685.26
pm [o] > 60 60 5 72.31 62.20
gm [o] > 10 10 5 24.71 16.42

gainderiv < 0 1 5 -1.72e-07 -5.70e-09
swing [V] > 1.6 1.6 5 1.58 1.02
dcgain [dB] > 60 60 5 68.44 59.91
settling [s] < 3e-07 3e-07 1 1.14e-07 9.91e-08

overshoot [%] < 1 1 1 0.00 0.60
slewrate [V/s] > 5e+06 5e+06 1 1.17e+07 1.09e+07
rise time [s] < 2e-07 2e-07 1 4.12e-08 4.39e-08
fall time [s] < 2e-07 2e-07 1 1.37e-07 2.13e-07

vdd

vss

inn inp

out

R0

PM5

PM6 PM7

PM3 PM2 PM9
PM10 PM11 PM14

PM15

NM16

C0

PM12PM13

NM13NM14

NM15

NM12NM11

NM10

NM9

PM8

NM1NM0

PM0 PM1

NM2

NM3

NM4

NM6 NM7

NM5 NM8

Figure 3: Topology for the BUFF and the BUFF5C test case.

The BUFF case considers only the nominal corner while the BUFF5C case
considers 5 different corners. The last case (DAMP) is also an amplifier cir-
cuit with 15 optimization parameters, 13 design goals, and 14 corners. The
topology of the circuit is depicted in Figure 4.

The optimization results are summarized in Table 5. PSADE proved to
be a promising approach for automated IC device sizing. Even though very
little information about the CF is available, PSADE was able to find solutions
that satisfied most of the design goals for all cases. The parallel approach
proved to be quite successful. Due to the stochastic nature of the method
it is unrealistic to expect a linear relationship between the speedup and the
number of slaves. It is even possible that the asynchronous approach in some
cases results in a shorter path toward the minimum of the CF. In general
PSADE was very successful at exploiting several processors and achieved
considerable speedups when the number of slaves was increased.
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Table 5: IC optimization results.

Nv Nc Ng fstop t1 S2 S4 S8

AMP 27 1 15 7.00e-02 7979.88 0.92 4.28 6.24
AMP5C 27 5 15 1.90e+00 158587.11 1.93 3.99 7.48
BUFF 36 1 13 0.00e+00 20023.60 2.12 4.43 9.38

BUFF5C 36 5 13 3.00e+00 629250.63 1.88 4.16 9.55
DAMP 15 14 13 5.30e+00 52155.32 1.99 3.94 8.04

8. Conclusion

A new hybrid asynchronous parallel global optimization method (PSADE)
was presented. It combines features from simulated annealing and differen-
tial evolution to efficiently sample the parameter space. The method was
designed as an asynchronous parallel algorithm that allows simultaneous eval-
uation of several trial solutions. This can greatly reduce the time needed for
the optimization especially in applications where the CF evaluation times
are long and vary with time. Optimization of 23 well known mathematical
test functions confirmed that PSADE is capable of producing near optimal
solutions with high probability. Tests with 1,2,4, and 8 processors also con-
firmed, that it is capable of achieving remarkable speedups when the number
of slaves is increased. PSADE was also used to optimize 5 real world analog
integrated circuits. The results confirm that it is a very promising approach
for analog IC device sizing. Since IC optimization is a very time consuming
task, the parallel approach is very appealing because it can reduce the design
times from several days to just a few hours.
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