
Parallel Simplex Algorithm for Circuit Optimisation
Arpad Bűrmen, Janez Puhan, Tadej Tuma, Iztok Fajfar, Andrej Nussdorfer

Faculty of Electrical Engineering
University of Ljubljana

Tržaška cesta 25, 1001 Ljubljana, Slovenija
arpadb@fides.fe.uni-lj.si

http://fides.fe.uni-lj.si/spice

Abstract
Probably the largest obstacle to overcome when

optimisation is applied to real-world circuits is the long
time it takes to complete an optimisation run. The most
intuitive solution is the use of parallel algorithms. One of
the algorithms that have given good results in conjunction
with the SPICE circuit simulator is the constrained
simplex algorithm. The research in this paper focuses on
its parallel implementation tailored for use on
heterogeneous networks of workstations connected by a
local area network (LAN). Such architectures are readily
available in every design community and are a low cost
solution. The major downside of such approach is the
relatively large overhead of LANs that are typically used
in circuit design groups. A parallel implementation of the
constrained simplex algorithm in SPICE OPUS is
presented. The algorithm is tested on 2 test functions and
3 circuit optimisation problems. The performance of the
algorithm is examined in terms of speed and
computational efficiency. The results are compared to the
ones obtained by the original constrained simplex
algorithm.

1. Introduction
As the computational power of a desktop workstation

grew, circuit simulation evolved from an aid available
only to designers with high-end computer hardware into a
widely used tool.

Circuit optimisation requires many cost function
evaluations and thus many simulations of the circuit,
which makes it a computationally intensive task. It is
performed by a circuit designer on a daily basis in the
form of parameter tuning based on designer's past
experience. Automated approaches are rarely used,
mostly due to the long time needed for an optimisation
run to complete.

One way of removing this obstacle is making the
underlying algorithms computationally more efficient. In
the past, a lot of effort in the aforementioned direction
was invested in making typical circuit designer's jobs like
Monte Carlo analysis or design centering more efficient
and thus faster.

Developments in the direction of algorithm
parallelisation occurred in the area of global optimisation
with methods like genetic algorithms or simulated
annealing, which by their nature bear a large
computational cost. Much less effort has been observed in
the area of direct optimisation methods (e.g. simplex
algorithm).

Despite the fact that simplex methods have been
around since 1960s they are still widely used for many
optimisation problems. The key to their popularity
probably lies in the fact that the algorithm itself is simple,
requires no derivatives of the cost function, and mostly
avoids getting trapped in local minima.

This article focuses on the parallel implementation of
the constrained simplex algorithm (CSA) optimised for
networks of workstations connected by a LAN (typically
10/100Mbit Ethernet). The state of the art in the field of
parallel optimisation with direct methods is given. The
discussed algorithm for parallel constrained optimisation
is presented. The problems in the test suite are described
and the results of the application of the parallel CSA are
presented. Finally the conclusions are summarised and
suggestions for future research are given.

2. State of the Art
The constrained simplex (CSA) algorithm [2] is an

extension of the Nelder-Mead simplex algorithm (NMSA)
[1]. Both of these algorithms search for the minimum of
the cost function in N-dimensional space. For NMSA the
number of points in the simplex is usually N+1 although
the algorithm can handle simplexes consisting of more
than N+1 points. A larger number of points generally
means better search capability and more cost function
evaluations.

In the past there has been some work on the
parallelisation of the NMSA. Experiments by Dennis and
Torczon [3] focused on doing simplex operations on
several worst points in parallel. The results were mixed.
The parallel implementation exhibited increased
performance in some cases. On the other hand cases were
demonstrated where the method performed worse than the
original NMSA.

 Much better results were obtained by the method
proposed by Coetzee and Botha [4]. A slightly modified
version of NMSA was implemented on a shared memory
parallel machine. The algorithm showed improved
performance over the original NMSA both in terms of
cost function evaluations and quality of results.

Up to now we haven't found a parallel implementation
of the CSA in the literature. CSA is simpler than NMSA
since it uses only mirroring and contraction. In order to
sample multiple regions of space delimited by implicit
constraints CSA manipulates a simplex with more than
N+1 points. Empirical results by Box suggested 2N for
the simplex size. Again the search capability and number
of cost function evaluations increase with the number of
points in the simplex.

The parallel implementation of the constrained simplex
algorithm has been tested with SPICE OPUS [5], [6]. The
Windows95/98/NT, LINUX and SOLARIS release can be
downloaded from http://fides.fe.uni-lj.si/spice.

3. The Method
The following steps are taken for an N-dimensional

optimisation run:

Initialise simplex:
1. Initial point must satisfy all implicit constraints.
2. Choose Nk ≥−1 points randomly. If a point

doesn't satisfy some implicit constraint, repeat
contraction towards initial point until all implicit
constraints are satisfied:

() ()()initial
i

chosen
i

chosen PPP +=+
2
11 (1)

The CSA performs the following sequence of steps on
k simplex points:

1. Sort the points by their descending cost function
value so that () () ()kPEPEPE ≥≥≥ ...21 .
Calculate the centroid (PC) of points P2,...,Pk:

∑
=

−=
k

i
ikC PP

2
1

1 (2)

2. Mirror P1 over the centroid with factor 1>α
() () CPPP αα +−=′ 1
1

1 1 (3)
3. While ()iP1′

- violates implicit constraints or (4a)
- () ()11 PEPE ≥′ (4b)
contract it towards the centroid:

() ()()C
ii PPP +′=′ +

12
11

1 (5)
If the contracted point comes closer to the
centroid than the desired final relative simplex
size, start over with ()1

1P′ and begin contracting it
towards the point with the lowest cost function
value (kP):

() ()()k
ii PPP +′=′ +

12
11

1 (6)

In case contraction towards kP fails (contracted

point is closer to kP than the desired final relative
simplex size, and conditions (4a) and (4b) are not
fulfilled), 1P becomes kP .

4. Repeat steps 1-3 until simplex is small enough.

It can be seen from the algorithm that at least 1 cost
function evaluation is required for one pass through steps
1-3.
One way to parallelise the algorithm is to mirror multiple
worst points at the same time. Instead of executing steps
2-3 only for the worst point, they can be executed for m
worst points. All of the worst points that were mirrored
are then replaced by the outcomes of step 4. The centroid
in step 1 is calculated using only the k-m best points.
Every sequence of steps 2-3 can be executed by one slave

processor. The algorithm requires m parallel slave
processors and one master processor. For every iteration a
slave processor gets the calculated centroid, the best
point, and one of the m worst points. After step 3 is
completed, the slave processor returns the outcome (new
point and its cost function value) to the master processor,
which keeps track of all points in the simplex and assigns
data for steps 2-3 to slave processors. Since the master
processor's work is simple and completed in a fairly short
amount of time, the algorithm can be executed on m
workstations where one workstation runs the master
process as well as one of the slave processes.

4. Implementation
The communication among processes on workstations

was implemented using TCP/IP. The SPICE OPUS
executable was modified to provide two modes of
operation: master and slave. In master mode the simulator
runs as a normal simulator. By issuing a 'drone' command
in SPICE master prompt, a request for a slave process can
be sent to a particular workstation. The workstation must
run a 'Drone Controller' program, which awaits such
requests and upon receiving one starts a slave process.
The SPICE slave process (SPICE OPUS executable in
slave mode) is instructed to connect to the master process.

The master process broadcasts all of the commands
and netlists it interprets to the slave processes. Exceptions
are commands like 'plot' and of course the 'optimize'
command. This way the slaves do exactly the same things
as the master thus creating the same state of data and
circuit as in the master process. When an 'optimize'
command is reached by the master the behaviour changes.
The master starts dividing jobs among slaves. The slaves
await jobs and return results after job execution. The
master collects the results from slaves and checks for
convergence. If convergence is reached, the slaves are
notified and a summary of results is sent to all slaves so
that the state of memory for all slaves synchronises with
the master. From that point on master continues to
broadcasts commands it executes to slaves as it did before
the 'optimize' command.

By utilising such methods of communication and
synchronisation, existing netlists with their .control blocks
can be simulated and optimised in a parallel manner
without any major changes in them. Two things have to
be done prior to running a circuit through the simulator:

1. a sequence of drone commands that create slave
processes on workstations has to be issued,

2. the parallel simplex method has to be selected
('optimize method ...' command).

5. Examples and Results
Since CSA performance depends on the set of initial

points that are chosen randomly, all optimization times
and numbers of CF evaluations are averaged over
multiple runs. The average network overhead is
calculated by:

L
TTT Loverhead

1−= (7)

Where L stands for the number of parallel
workstations and LT stands for the average time per CF
evaluation when L parallel workstations are used.

5.1 Test Functions
The parallel algorithm was tested on two test functions:

Rosenbrock function (2 dimensional) and Woods function
(4 dimensional). Both of them are de-facto standard test
functions for optimisation algorithms. Both of them have
long curved valleys that present a major problem for most
algorithms. The number of points in the simplex was set
to 8 for the Rosenbrock function and 11 for the Woods
function. Optimisation was stopped when the relative
simplex size was smaller than 0.001. The tests were
conducted using a network of 3 workstations connected
by 10Mbit Ethernet. Since the number of CF evaluations
and consequently the run time depends on the initial
simplex configuration (which is random), the results were
averaged over 10 runs. The results are summarized in
Table 1 and Table 2.

Mean CF evaluations
Workstations 1 2 3
Rosenbrock 753 859 981
Woods 1254 1346 1476

Table 1: Comparison of number of CF evaluations for
various number of parallel workstations

As it can be seen from Table 1, the number of CF
evaluations increases with the number of parallel
workstations. This reduces the overall acceleration that
can be achieved by parallelisation.

Mean optimisation time (s)
Workstations 1 2 3
Rosenbrock 1.47 1.11 1.10
Woods 5.11 3.34 2.60

Table 2: Comparison of time needed for the method to
converge for various number of parallel workstations.

The mean optimisation time for both test functions
shows a slight, but not significant acceleration for the
Rosenbrock test function. This is something one would
expect since CF evaluation takes a fairly small amount of
time (same order of magnitude as it takes for a message
to be transported between two workstations). Therefore
the network overhead determines the overall performance
of the algorithm.

The situation changes in favour of the CF evaluation
time for the Woods test function, where significant
acceleration can be achieved by using 2 workstations.

5.2 Test Circuits
Three cases were tested: linearisation of a BJT

amplifier, Schmitt trigger optimisation and robust design
of a low-pass filter [7], [8]. Table 3 gives detailed
information on every test circuit.

BJT amplifier Schmitt Low-pass

Parameters 2 2 5
k 8 8 10
Constraints 1 1 0
Cases averaged 10 10 5

Table 3: Number of optimised parameters,
number of points in the simplex and number of implicit

constraints.

The robust filter design case is new and is derived
from the 5th order low-pass filter test case. The goal is to
design a low-pass filter with less than 2dB ripple between
0.1Hz and 85Hz, and more than 70dB attenuation at
350Hz. The capacitors in the circuit have 2% tolerances.
The cost function increases linearly from 0 if any of the
design requirements is not fulfilled. Worst case results are
obtained by doing 20 iterations of Monte Carlo analysis
for each examined point in design space.

The results for the three test circuits are given in Table
4 and Table 5.

Mean CF evaluations
Workstations 1 2 3
BJT Amplifier 245 244 239
Schmitt trigger 407 416 442
Low-pass filter 250 167 191

Table 4: Comparison of number of CF evaluations for
various number of parallel workstations

All cases show significant acceleration when
optimisation is performed in parallel (Table 5).

Mean optimisation time (s)
Workstations 1 2 3
BJT amplifier 1.57 0.84 0.48
Schmitt trigger 50.07 24.96 18.14
Low-pass filter 270.01 93.11 72.43

Table 5: Comparison of time needed for the method to
converge for various number of parallel workstations.

The comparison of Table 6 and Table 8 confirms the
assumption that the performance is limited by network
overhead. It can be seen that the algorithm performs well
when one CF evaluation takes at least 5ms (see numbers
for 1 workstation in Table 6).

Mean time/CF evaluation (ms)
Workstations 1 2 3
Rosenbrock 1.59 1.29 1.11
Woods 4.07 2.48 1.76
BJT amplifier 6.41 3.44 2.00
Schmitt trigger 123 60 41
Low-pass filter 927 556 379

Table 6: mean time per CF evaluation.

To further illustrate the effect of network overhead
Table 7 summarises the results obtained using (7). As it
can be seen, the network overhead affects the
performance significantly only for the first two cases.

Mean overhead/CF evaluation (ms)

Workstations 2 3
Rosenbrock 0.31 (24%) 0.34 (31%)
Woods 0.44 (18%) 0.40 (23%)
BJT amplifier 0.24 (7.0%) 0.13 (6.5%)
 Schmitt trigger 1.52 (2.5%) 1.08 (2.6%)
Low-pass filter 17.2 (3.1%) 19.4 (5.1%)

Table 7: mean overhead per CF evaluation
(percent values are relative to mean CF evaluation time).

The overall acceleration factor is listed in Table 8. For
the linearisation of a BJT amplifier and robust filter
design the acceleration factors exceed the number of
parallel workstations. This could be attributed to
increased efficiency of the parallel CSA due to parallel
exploration of multiple directions. The assumption is
confirmed in Table 4 (the parallel algorithm indeed needs
less CF evaluations when multiple parallel workstations
are used).

Acceleration factor
Workstations 2 3
Rosenbrock 1.32 1.34
Woods 1.53 1.97
BJT amplifier 1.87 3.27
Schmitt trigger 2.01 2.76
Low-pass filter 2.90 3.73

Table 8: Acceleration factor for various test cases and
numbers of workstations.

6. Conclusions
A parallel method for constrained optimisation was

presented. The method was verified on several test cases.
A significant increase in speed roughly proportional to the
number of parallel workstations was demonstrated for
cases where one CF evaluation takes more than 5ms.

An iteration of CSA steps 2-3 that are executed by one
workstation can require 1 or more CF evaluations. The
upper limit of these numbers is determined by the relative
simplex size where the algorithm terminates. In case this
size is smaller, more CF evaluations can happen in steps
2-3. Since not all workstation need the same number of
CF evaluations some of them have to wait for others to
finish before they get new data to process from the
master. The same can happen in an environment where
workstations differ in speed. In the latter case the
performance would be bounded from below by the
slowest workstation.

Both of the aforementioned disadvantages could be at
least partially solved by researching in the following two
directions:
• dynamic load balancing among workstations

• dividing the work from steps 2-3 more equally
among workstations in a more predictable manner

The algorithm itself also requires more evaluation on
real-world circuit design problems. Especially robust
circuit design (which is performed more or less manually
in the ASIC design community) could be a potential area
where the presented parallel algorithm and its derivatives
could be of great benefit. There are several reasons for
this:
• most of the ASIC design simulations take a

significant amount of time which makes the use of
any optimisation algorithm impractical,

• the network infrastructure required by the algorithm
is cheap and readily available in ASIC design
communities,

• by using faster processors or more workstations the
speed can be increased without major additional cost
which is not the case with dedicated parallel
hardware and hardware accelerators.

7. References
[1] J. A. Nelder, R. Mead, “A Simplex Method for

Function Minimization”, Computer Journal, Vol. 7,
pages 308-313, 1965

[2] M. J. Box, “A New Method of Constrained
Optimization and a Comparison with Other
Methods”, Computer Journal, Vol. 7, pages 42-52,
1965

[3] J. E. Dennis, Jr., V. Torczon, “Parallel
Implementations of the Nelder-Mead Simplex
Algorithm for Unconstrained Optimization”,
Proceedings of the SPIE, Vol. 880, pages 187-191,
1988

[4] L. Coetzee, E. C. Botha, “The Parallel Downhill
Simplex Algorithm for Unconstrained
Optimisation”, Concurrency: Practice and
Experience, Vol. 10(2), pages 121-137, 1998

[5] T. Quarles, A. R. Newton, D. O. Pederson, A.
Sangiovanni-Vincentelli, “SPICE3 Version 3f4
User’s Manual”, University of California,Berkeley,
California, 1989

[6] J. Puhan, T. Tuma, "Optimization of analog circuits
with SPICE 3f4", Proceedings of the ECCTD’97,
Volume 1, pages 177 - 180, 1997

[7] J. Puhan, T.Tuma, I. Fajfar, “Optimisation Methids
in SPICE, a Comparison”, Proceedings of the
ECCTD’99, Volume 1, pages xxx-xxx, 1999

[8] “Application notes”, http://fides.fe.uni-
lj.si/spice/applications/applications.html, 2001

Povprečno število računanj kriterijske funkcije
Št. računalnikov 1 2 3
Rosenbrock 753 859 981
Woods 1254 1346 1476
Linearizacija 245 244 239
Schmitt trigger 407 416 442
NP filter 250 167 191

Povprečen čas optimizacije (s)
Št. računalnikov 1 2 3
Rosenbrock 1.47 1.11 1.10
Woods 5.11 3.34 2.60
Linearizacija 1.57 0.84 0.48
Schmitt trigger 50.07 24.96 18.14
NP filter 270.01 93.11 72.43

Pospešitev
Št. računalnikov 2 3
Rosenbrock 1.32 1.34
Woods 1.53 1.97
Linearizacija 1.87 3.27
Schmitt trigger 2.01 2.76
NP filter 2.90 3.73

